Название книги:

Роман с Data Science. Как монетизировать большие данные

Автор:
Роман Зыков
Роман с Data Science. Как монетизировать большие данные

000

ОтложитьЧитал

Шрифт:
-100%+

Иллюстрации Владимира Вышванюка


Информация, содержащаяся в данной книге, получена из источников, рассматриваемых издательством как надежные. Тем не менее, имея в виду возможные человеческие или технические ошибки, издательство не может гарантировать абсолютную точность и полноту приводимых сведений и не несет ответственности за возможные ошибки, связанные с использованием книги. Издательство не несет ответственности за доступность материалов, ссылки на которые вы можете найти в этой книге. На момент подготовки книги к изда-нию все ссылки на интернет-ресурсы были действующими.


© ООО Издательство «Питер», 2021

© Серия «IT для бизнеса», 2021

© Роман Зыков, 2021

Об авторе

Роман Владимирович Зыков, 1981 года рождения, в 2004 году получил степень бакалавра, а затем магистра прикладной физики и математики в МФТИ (Московском физико-техническом институте).

В 2002 году начал свой карьерный путь в аналитике данных (Data Science) в качестве технического консультанта в компании StatSoft Russia, российского офиса одноименной американской компании-разработчика пакета статистического анализа данных STATISTICA. В 2004 году был принят на должность руководителя аналитического отдела интернет-магазина Ozon.ru, где создавал аналитические системы с нуля, в том числе веб-аналитику, аналитику баз данных, управленческую отчетность, внес вклад в систему рекомендаций.

В 2009 году консультировал ряд проектов инвестиционного фонда Fast Lane Ventures и гейм-индустрии.

В 2010 году возглавил отдел аналитики в интернет-ритейлере Wikimart.ru.

В конце 2012 года стал сооснователем и совладельцем маркетинговой платформы для интернет-магазинов RetailRocket.ru. На текущий момент компания является безусловным лидером на рынке в России и успешно работает на рынках Чили, Голландии, Испании и других.

С 2007-го вел блог «Аналитика на практике» (KPIs.ru – ныне не существует), где евангелизировал анализ данных в применении к бизнес-задачам в электронной коммерции. Выступал на отраслевых конференциях, таких как РИФ, iMetrics, Gec 2014 вместе с Аркадием Воложем (Yandex), бизнес-конференциях в Дублине и Лондоне, в посольстве США (AMC Center), университете Сбербанка. Печатался в технологическом прогнозе PwC, ToWave, «Ведомостях», «Секрете фирмы».

В 2016 году прочитал мини-лекцию в концертном зале MIT в Бостоне о процессах тестирования гипотез.

В 2020 году был номинирован на премию CDO Award.

Благодарности

Я посвящаю эту книгу своей жене Екатерине и моим детям – Аделле и Альберту. Катя придала мне решимости написать книгу и приняла большое участие в редактировании текстов. За что я ей очень благодарен.

Также я благодарен своим родителям, которые вырастили и воспитали меня в очень непростое время. Отдельная благодарность моему отцу Владимиру Юрьевичу за то, что привил мне любовь к физике.

Я благодарен всем на моем долгом пути в аналитику данных. Илье Полежаеву, Большакову Павлу и Владимиру Боровикову за грамотное руководство, когда я только пришел в StatSoft. Бернару Люке, тогда генеральному директору Ozon.ru, а также коллегам в Ozon.ru: Александру Перчикову, Александру Алехину, Валерию Дьяченко – за совместное написание рекомендательной системы. Марине Туркиной и Ирине Коткиной – с вами было замечательно сотрудничать. Основателям проекта Wikimart.ru Камилю Курмакаеву и Максиму Фалдину – те знакомства в Калифорнии очень сильно повлияли на меня. Александру Аникину – ты очень крутой был тогда, а сейчас вообще звезда. Основателям проекта Ostrovok.ru – Кириллу Махаринскому и Сержу Фаге, а также Жене Курышеву, Роману Богатову, Феликсу Шпильману – с вами очень интересно было работать, я узнал много нового о разработке.

Я благодарен сооснователям Retail Rocket – Николаю Хлебинскому и Андрею Чижу. Отдельная благодарность венчурному фонду Impulse VC (Кириллу Белову, Григорию Фирсову, Евгению Пошибалову) – за то, что поверили в нас. Всем сотрудникам Retail Rocket, особенно моим ребятам Александру Анохину и Артему Носкову – вы лучшие.

Я благодарен психологу Елене Клюстер, с которой работаю уже несколько лет, за осознание своих собственных границ и своих истинных желаний. Благодарен Андрею Гузю, моему тренеру по плаванию, за аналитический подход к тренировкам. Оказывается, так можно, и не только профессионалам, но и любителям.

Выражаю благодарность всем моим виртуальным рецензентам, особенно Артему Аствацатурову, Александру Дмитриеву, Аркадию Итенбергу, Алексею Писарцову. Роману Нестеру – за рецензию на главу по этике данных.

Благодарен всем, кто способствовал изданию этой книги. Прежде всего Алексею Кузменко, который помог мне быстро найти издательство, минуя бюрократические препоны. Отдельная благодарность Владимиру Вышванюку за ироничные иллюстрации кота Вилли. Юлии Сергиенко и Наталье Римицан, которые делали все, чтобы эта книга вышла в свет.

От издательства

Ваши замечания, предложения, вопросы отправляйте по адресу comp@piter.com (издательство «Питер», компьютерная редакция).

Мы будем рады узнать ваше мнение!

На веб-сайте издательства www.piter.com вы найдете подробную информацию о наших книгах.

Введение

Дайте мне точку опоры, и я переверну Землю.

Архимед


Дайте мне данные, и я переверну всю вашу жизнь.

Data Scientist Архимед

Данные повсюду – начиная от алгоритмов «Тиндера», который «матчит» вас с далеко не случайными людьми, и заканчивая информационными войнами, которые ведут политики. Никого уже не удивляет, что за каждым нашим шагом пристально следят: будь то история запросов в браузере телефона или ваши действия в офлайне. Задержитесь на секунду у витрины спортивного магазина – и ждите его таргетированную рекламу в соцсетях с минуты на минуту. Расскажите коллеге, что натворил ваш кот, – и вот сухие корма и наполнители уже тут как тут в вашей ленте.

Особо впечатлительные могут впасть в паранойю – но данные в этом не виноваты. Все зависит от того, в чьи руки они попадут. С анализом данных связано очень много мифов, а data scientist – одна из самых перспективных и «сексуальных» профессий будущего. В своей книге я намерен развенчать мифы и рассказать, как все обстоит на самом деле. Надеюсь, читатель, ты, как и я, окажешься на «светлой» стороне силы.

Я окончил МФТИ в начале нулевых и тогда же возглавил аналитический отдел интернет-магазина Ozon.ru, где создавал аналитические системы с нуля. Я консультировал инвестиционные фонды, гигантов ритейла и гейм-индустрии, а восемь лет назад стал сооснователем и совладельцем маркетинговой платформы для интернет-магазинов RetailRocket.ru. Сейчас компания не просто является безусловным лидером на рынке в России, но и успешно работает на рынках Чили, Голландии, Испании и Германии. В 2016 году я прочитал лекцию в концертном зале MIT в Бостоне про процессы тестирования гипотез. В 2020 году номинировался на премию CDO Award.

Считается, что нужно потратить 10 000 часов для того, чтобы стать очень хорошим специалистом в своей области. Анализом данных я занимаюсь с 2002 года, когда это не было так популярно и хайпово. Так вот, чтобы получить эти заветные 10 000 часов, нужно проработать 10 000 часов / 4 часа в день / 200 дней в году = 12.5 лет. Я в полтора раза превысил эту цифру, поэтому, надеюсь, получилось написать книгу, которая будет очень полезна для вас, дорогие читатели.

Эта книга о том, как превращать данные в продукты и решения. Она основывается не на академических знаниях, а на моем личном опыте анализа данных длиной почти в двадцать лет. Сейчас существует очень много курсов по анализу данных (data science) и машинному обучению (machine learning, ML). Как правило, они узкоспециализированы. Отличие этой книги в том, что она, не утомляя частностями, дает цельную картину и рассказывает о том:

• как принимать решения на основе данных;

• как должна функционировать система;

• как тестировать ваш сервис;

• как соединить все в единое целое, чтобы на выходе получить «конвейер» для ваших данных.

Для кого эта книга

Эта книга предназначена для думающих читателей, которые хотят попробовать свои силы в области анализа данных и создавать сервисы на их основе.

Она будет вам полезна, если вы менеджер, который хочет ставить задачи аналитике и управлять ею. Если вы инвестор, с ней вам будет легче понять потенциал стартапа. Те, кто «пилит» свой стартап, найдут здесь рекомендации, как выбрать подходящие технологии и набрать команду. А начинающим специалистам она поможет расширить свой кругозор и начать применять практики, о которых вы раньше не задумывались – и это выделит вас среди профессионалов такой непростой и изменчивой области.

Как читать эту книгу

Я писал эту книгу так, чтобы ее можно было читать непоследовательно. Краткое содержание каждой главы:

Глава 1 «Как мы принимаем решения» описывает общие принципы принятия решения, как данные влияют на них.

Глава 2 «Делаем анализ данных» вводит общие понятия – с какими артефактами мы имеем дело, когда анализируем данные. Кроме того, с этой главы я начинаю поднимать организационные вопросы анализа данных.

Глава 3 «Строим аналитику с нуля» рассказывает об организации процесса построения аналитики: от первых задач и выбора технологии, заканчивая наймом.

 

Глава 4 «Делаем аналитические задачи» – полностью о задачах. Что такое хорошая аналитическая задача, как ее проверить. Технические атрибуты таких задач – датасеты, описательные статистики, графики, парный анализ, технический долг.

Глава 5 «Данные» о том, что говорят о данных – объемы, доступы, качество и форматы.

Глава 6 «Хранилища данных» рассказывает, зачем нужны хранилища, какие они бывают, также затрагиваются популярные системы для Big Data – Hadoop и Spark.

Глава 7 «Инструменты анализа данных», полностью посвящена наиболее популярным способам анализа от электронных таблиц в Excel до облачных систем.

Глава 8 «Алгоритмы машинного обучения» является базовым введением в машинное обучение.

Глава 9 «Машинное обучение на практике» является продолжением предыдущей главы: даются лайфхаки, как изучать машинное обучение, как работать с машинным обучением, чтобы оно приносило пользу.

Глава 10 «Внедрение ML в жизнь: гипотезы и эксперименты» рассказывает о трех видах статистического анализа экспериментов (статистика Фишера, байесовская статистика и бутстрэп) и об использовании А/Б-тестов на практике.

Глава 11 «Этика данных». Я не смог пройти мимо этой темы, наша область начинает все больше и больше регулироваться со стороны государства. Здесь поговорим о причинах этих ограничений.

Глава 12 «Задачи и стартапы» рассказывает об основных задачах, которые я решал в e-commerce, а также о моем опыте сооснователя проекта Retail Rocket.

Глава 13 «Строим карьеру» больше предназначена для начинающих специалистов – как искать работу, развиваться и даже когда уходить дальше.

Глава 1
Как мы принимаем решения

«Итак, главный принцип – не дурачить самого себя. А себя как раз легче всего одурачить. Здесь надо быть очень внимательным. А если вы не дурачите сами себя, вам легко будет не дурачить других ученых. Тут нужна просто обычная честность.

Я хочу пожелать вам одной удачи – попасть в такое место, где вы сможете свободно исповедовать ту честность, о которой я говорил, и где ни необходимость упрочить свое положение в организации, ни соображения финансовой поддержки – ничто не заставит вас поступиться этой честностью. Да будет у вас эта свобода».

Нобелевский лауреат Ричард Фейнман, из выступления перед выпускниками Калтеха в 1974 году

Монетизация данных возможна лишь тогда, когда мы принимаем на основе этих данных правильные решения. Однако делать выбор, руководствуясь только статистикой, – плохая идея: как минимум нужно уметь читать их между строк и слушать свою интуицию (gut feeling). Поэтому в первой главе я расскажу про принципы, которыми я пользуюсь, принимая решения на основе данных. Я проверял на своем опыте – они работают.

Решения принимать непросто, ученые даже придумали новый термин «усталость от решений» (decision fatigue) [7]. Мы накапливаем стресс, совершая выбор каждый день сотни раз: и в какой-то момент, когда уже полностью вымотаны необходимостью принимать решения, можем махнуть рукой и начать действовать наугад. Я не зря привел в начале этой книги цитату выдающегося физика, нобелевского лауреата Ричарда Фейнмана. Она напрямую касается как аналитики данных, так и вообще нашей жизни.

Как принимать верные решения, оставаясь честным с собой?

В книге «Биология добра и зла. Как наука объясняет наши поступки» профессор Стэнфордского университета, нейробиолог Роберт Сапольски [1] пишет, что на наши поступки, а значит и решения, влияет множество факторов: cреда, в которой мы выросли, детские травмы, травмы головы, гормональный фон, чувства и эмоции. На нас всегда влияет множество факторов, которые мы даже не осознаем. Мы необъективны!

Лично я принял как данность, что гораздо легче принять необъективное и срезать углы, чем объективное, потому что для второго нужны серьезные усилия.

Вспомните об этом, когда будете предоставлять цифры кому-либо для принятия решения. И даже мои сотрудники указывали мне на то, что я сам нарушаю принципы объективности при утверждении результатов некоторых А/Б-тестов. Тогда я возвращался к реальности и соглашался с ними – объективность важнее моих априорных решений до проведения эксперимента.

В современном мире решения мы вынуждены принимать быстро и в условиях неопределенности. Но это не катастрофа. В квантовой физике, в отличие от классической, мы не знаем точно, где находится электрон, но знаем вероятность его нахождения. И вся квантовая физика базируется на этих вероятностях. С решениями точно так же – никто не знает истины, мы просто пытаемся угадать «правильное» с определенной долей успеха. И именно для этого нужны данные – увеличить вероятность успеха ваших решений!

Четыреста сравнительно честных способов

Остап Бендер знал четыреста сравнительно честных способов отъема денег у населения. Профессиональный аналитик знает примерно столько же способов «повернуть» цифры в сторону «нужного» решения. К сожалению, это очень распространено в политике: вспомните, как государства рапортовали о количестве зараженных во время пандемии вируса COVID-19. Показатели смертности в России были занижены [6]. Оказалось, что если человек болел коронавирусом и умер от сопутствующего заболевания, то в соответствующую статистику не попадет. В большинстве же западных стран одной положительной пробы на коронавирус было достаточно, чтобы попасть в статистику. Если копнуть глубже, мы видим, что у всех разная методика и разные цели. Существуют объективные и субъективные причины неточности таких цифр.

Первая причина – объективная: много бессимптомных носителей вируса, они не обращаются к врачам. Здесь требуется «ковровое» тестирование населения, которое подразумевает случайную выборку из всей популяции определенной местности. Тестирование добровольное, значит, кто-то не придет. Некоторые – потому, что у них есть симптомы коронавируса, и если это будет обнаружено в процессе тестирования, то их запрут дома на двухнедельный карантин. А это может привести к потере заработка. В итоге мы получим выборку, смещенную в сторону здоровых людей, а значит, и заниженную оценку количества заболевших.

Вторая причина тоже объективная – нет денег на массовое тестирование населения.

А вот третья причина – субъективная: власти хотят уменьшить официальную статистику заболевших, чтобы снизить панику среди населения и успокоить международное сообщество. Умение понимать эти причины и читать данные между строк – важное качество аналитика, которое позволяет ему делать более объективные выводы.

В работе я постоянно с этим сталкивался. Сейчас все живут на KPI, поэтому руководитель будет не очень-то рад плохим цифрам – премия висит на волоске. Возникает искушение найти показатели, которые улучшились. Нужно быть очень сильным руководителем, чтобы принять отрицательные результаты и внести коррекцию в работу. Аналитик данных как исследователь несет личную ответственность за результат своих цифр.

Чему можно научиться у Amazon?

Мне всегда нравились письма Джеффа Безоса (основателя Amazon.com) акционерам. Например, еще в 1999 году он писал про важность систем персональных рекомендаций на сайте, которые сейчас стали стандартом в современной электронной коммерции. Меня заинтересовали два его письма: 2015 [2] и 2016 [3] годов.

В первом из них Безос писал про «Фабрику изобретений» (Invention Machine). Он точно знает, о чем говорит, – само провидение вело Amazon через тернии электронной коммерции. Попутно в компании изобретали много вещей, абсолютно новых для рынка: система рекомендаций, А/Б-тесты (да-да, именно они были пионерами тестирования гипотез для веба), AWS (Amazon Web Services), роботизация склада, кнопки на холодильник для мгновенного заказа порошка и многое другое.

Так вот, в первом письме он рассуждает о том, как в больших компаниях принимаются решения об изобретении новых продуктов. Часто процесс утверждения выглядит так: все участники процесса (как правило, руководители департаментов компании) проставляют свои «визы». Если решение положительное, идея или гипотеза отправляются на реализацию. Здесь Безос предупреждает, что есть два типа решений и они не должны проходить один и тот же процесс утверждения.

Первый тип – решения, у которых нет или почти нет обратной дороги. Это как дверь, в которую можно войти, но нельзя выйти. Здесь нужно действовать очень внимательно и осторожно.

Второй тип – решения, у которых есть обратный ход. Дверь, в которую можно войти и выйти. Здесь он предлагает утверждать идею достаточно быстро, не мучая ее долго бюрократическими процедурами.

В письме 2016 года Безос противопоставляет компанию Дня 1 (Day 1), где сохраняется живая атмосфера создания компании и новых продуктов, компании Дня 2 (Day 2), которая статична и, как следствие, приходит к своей ненужности и смерти. Он выделяет 4 фактора, которые определяют компанию Дня 1:

• истинная одержимость покупателем (customer obsession);

• скепсис относительно моделей (a skeptical view of proxies);

• стремительное освоение внешних трендов (the eager adoption of external trends);

• стремительное принятие решений (the eager adoption of external trends).

Последний пункт мне кажется особенно важным в контексте этой книги. Для поддержания атмосферы компании Дня 1 требуется принимать быстрые и качественные решения. Мой шестилетний сын в таких случаях восклицает: «Но как?» Вот правила Безоса:

1. Никогда не использовать один-единственный процесс принятия решений (есть два типа решений, про которые я написал выше). Не дожидаться получения 90 % всей информации, нужной для принятия решения, – 70 % уже достаточно. Ошибаться не так страшно, если вы умеете быстро исправляться. А вот промедление, скорее всего, влетит вам в копеечку.

2. Не соглашайся, но позволяй. Когда руководителю предлагают идею талантливые и успешные сотрудники, а он не согласен с ней – ему стоит просто позволить им ее реализовать, а не тратить их усилия на то, чтобы убедить. Безос рассказал, как дали зеленый свет одному из сериалов Amazon Studios. Он считал, что запускать этот проект рискованно: Безосу эта история казалась сложной в производстве и не слишком интересной. Но команда с ним не соглашалась. Тогда он сказал – хорошо, давайте пробовать. Им не пришлось убеждать Безоса в своей правоте, и они сэкономили уйму времени. Сам он подумал так: эти ребята уже привезли домой одиннадцать премий «Эмми», шесть «Золотых Глобусов» и три «Оскара» – они знают, что делают, просто у нас разные мнения.

3. Быстро находите причины несогласия и эскалируйте их наверх вашим руководителям. Разные команды могут иметь разные взгляды на решение. Вместо того чтобы тратить время на изматывающих совещаниях в попытках договориться – лучше эскалировать проблему наверх.

Аналитический паралич

Поспешишь – людей насмешишь. Все самые страшные ошибки я совершил, когда торопился – например, когда 15 лет назад пришел в Ozon.ru, чтобы поднять аналитику с нуля и должен был каждую неделю делать огромную простыню метрик о деятельности всей компании без нормальных проверок. Из-за давления менеджмента и спешки в этом регулярном еженедельном отчете было множество ошибок, с последствиями которых мне еще долго пришлось разбираться.

Современный мир живет на бешеных скоростях, но расчет метрик нужно делать очень аккуратно, а значит, не быстро. Конечно, не стоит впадать в другую крайность – «аналитический паралич», когда на каждую цифру будет уходить очень много времени. Иногда попытки сделать правильный выбор приводят к тому, что я называю «аналитическим параличом» – когда уже пора принять решение, но не получается. Слишком высока неопределенность результата или рамки слишком жесткие. В аналитический паралич легко впасть, если пытаться принять решение чисто рационально, руководствуясь только логикой.

Яркий пример – книга «Проект Рози» Грэма Симсиона (кстати, одна из любимых книг Билла Гейтса и его жены). Молодой успешный ученый-генетик Дон ищет жену, но ни разу еще не продвинулся дальше первого свидания. Сочтя традиционный способ поиска второй половинки неэффективным, Дон решает применить научный подход. Его проект «Жена» начинается с подробнейшего 30-страничного вопросника, призванного отсеять всех неподходящих и выявить одну – идеальную. Понятно, что человека, который соответствовал бы такому списку требований, просто не существует. А потом он знакомится с девушкой, у которой нет ничего общего с его идеалом. Что из этого вышло – догадайтесь сами.

Второй пример – покупка машины. Когда я в последний раз делал это, то составил целую таблицу в Excel с техническими параметрами машин, вплоть до размера багажника в сантиметрах. Потом я целый год думал, ходил, смотрел, а в результате купил ту, которой и близко не было в моем списке, по велению сердца. Но на самом деле это было не веление сердца – просто за целый год поисков и анализа я понял, что в этом списке было по-настоящему важно для меня, а что нет.

 

Третий пример из моей профессиональной практики связан с гипотезами, точнее с тестами. Представьте себе, что вы вместо старого алгоритма рекомендаций разработали новый и хотите его протестировать. У вас есть 10 сайтов, где можно выполнить сравнение. В итоге вы получили: 4 выигрыша, 4 ничьи и 2 проигрыша. Стоит ли заменить старый алгоритм на новый? Все зависит от критериев решения, которые сформулировали перед тестом. Новый алгоритм должен победить на всех сайтах? Или вероятность выигрыша должна быть больше вероятности проигрыша? В первом случае очень высока вероятность того, что вы закопаетесь в бесконечных итерациях, «полируя» свой алгоритм до совершенства, особенно учитывая то, что тесты займут не одну неделю. Это типичная ситуация «аналитического паралича». Во втором – условие кажется легким. Хотя из практики скажу, что даже его выполнить бывает очень непросто.

Я считаю, что в решениях нужно идти на осознанный риск, даже если нет всей информации. В наше время, конечно, мир меняется слишком быстро, чтобы иметь роскошь долго делать выбор. Если решение не примете вы, это сделает кто-то за вас, например ваш конкурент.


Издательство:
Питер