bannerbannerbanner
Название книги:

Силы тяготения внутри обруча, сферы и между двух точек

Автор:
Петр Путенихин
полная версияСилы тяготения внутри обруча, сферы и между двух точек

000

ОтложитьЧитал

Шрифт:
-100%+

Рис.1.3. Логарифмический график изменения силы притяжения внутри обруча пробного тела в зависимости от его удалённости от центра


Без логарифма, с частичным отсечением верхних значений график выглядит на всём интервале возрастающим



Рис.1.4. График изменения силы притяжения пробного тела внутри обруча в зависимости от его удалённости от центра. Максимальные значения частично отсечены.


Если ещё больше увеличить масштаб начального интервала, увеличить отсечение сверху, то будет видна практически параболическая или экспоненциальная зависимость



Рис.1.5. График изменения силы притяжения внутри обруча пробного тела в зависимости от его удалённости от центра. Максимальные значения отсечены.


Интеграл силы (1.3) мы формировали исходя из положительного направления силы в сторону центра обруча. Интегрирование и графики показали положительное значение силы. Из этого следует вывод: тело в пустом обруче притягивается к его центру так, будто там находится некий массивный объект.

Главной целью наших исследования сил притяжения в обруче является определение необходимости учёта этих сил при исследовании гравитационных сил в однородном диске, являющемся аналогом дисковой галактики. Наличие такой внутренней силы ведёт к формированию специфических кривых вращения, например, подобных наблюдаемой кривой вращения галактики Млечный Путь [4].

2. Притяжение тела внутри сферы

Вычислим силу притяжения тела массой m = 1, находящегося на удалении Rx от центра сферы радиусом R0. Каждый бесконечно малый, дифференциальный объём dv сферы массой dM притягивает тело m независимо от других её элементов, составляющих



Рис.2.1. Определение дифференциала площади сферы для нахождения силы притяжения пробного тела внутри сферы


На рисунке видно, что две плоскости, одна из которых – плоскость X0Y, вырезают на сфере "апельсиновую дольку" с углом dμ. На её поверхности, на "кожуре" ещё две плоскости с углом между ними dφ вырезают участок площадью ds. Можно заметить, что все "апельсиновые дольки" равны друг другу и не зависят от собственного угла μ, поэтому мы приняли его равным dμ. Поэтому нам достаточно рассмотреть только одну из них и затем умножить на число этих долек. Число долек определяется в свою очередь от их ширины:



Если взять их ширину бесконечно малой, то число этих долек станет равным бесконечности. Однако их суммарная площадь равна, как видим, полному углу



Напротив, другая сторона дифференциальной площади ds зависит от угла φ дважды – непосредственно, по образующей вдоль дольки и через зависимость ортогональной стороны, образованной углом dμ, зависящей также и от угла φ.

Действительно, как видно на рисунке ширина дольки разная, в зависимости от угла φ. Самая широкая её часть находится в плоскости Z0Y, а вблизи плоскости Z0X ширина дольки сводится к нулю. Зависимость эта от угла φ описывается уравнением R0sinφdμ. Таким образом, площадь дифференциального участка сферы описывается уравнением



С учетом принятого выше условия равенства всех дифференциальных "апельсиновых долек" это уравнение приобретает вид



Для удобства дальнейших рассуждений рассмотрим другой рисунок, менее перегруженный линиями. Этот рисунок мы использовали при вычислении сил, действующих на объект внутри обруча. В данном случае мы будем помнить, что площадь дифференциального участка описывается новым уравнением (2.1)


Издательство:
Автор