bannerbannerbanner
Название книги:

Дело в химии. Как все устроено?

Автор:
Джузеппе Алончи
Дело в химии. Как все устроено?

000

ОтложитьЧитал

Шрифт:
-100%+

© 2019 Giunti Editore, SpA, Frenze-Milano www.giunti.it

© Фото на обложке предоставляется с разрешения Джузеппе Алончи

© М. С. Соколова, перевод на русский язык, 2022

© ООО «Издательство АСТ», 2022

Введение

Впервые я познакомился с химией, когда мне было около десяти лет. Я был уже тогда увлечен наукой, особенно астрономией. Однако когда мне подарили набор «Юный химик», я почувствовал, что это – мое будущее. В таком возрасте осознать свое призвание далеко не всем удается, и я понял, что мне очень повезло с таким даром.

Я рос, начал осваивать науку самостоятельно, благодаря моим замечательным родителям, поддержавшим мое увлечение. И в подростковом возрасте у меня уже была крошечная лаборатория, где я наслаждался органическим синтезом и химическими анализами, проводил разные эксперименты, что рождались в моем воображении. Это была эпоха форумов и блогов, YouTube еще не существовал, я часами обсуждал в Интернете с виртуальными собеседниками разнообразные химические задачи, слушал их рассказы об опытах и реакциях.

Это огромное везение – сформулировать свои идеи и увлечения еще в детстве, ведь дети впитывают как губки любую информацию, поступающую извне, и перерабатывают ее на свой собственный манер. Это везение еще и потому, что, изучая науку самостоятельно, учишься перепроверять утверждения, бороться с предвзятостью, менять свое мнение, много и упорно трудиться: ты должен постичь все сам, в лучшем случае – обсудить вопрос с другими увлеченными, как и ты, товарищами. Этот процесс познания заметно отличается от общепринятого, классического, в котором некий учитель за кафедрой объясняет тебе, в чем суть вещей, – тебе самому приходится искать ответы в книгах, пока ты не найдешь адекватное объяснение, или дискутировать с незнакомцами в Сети, пока в мозгу что-то внезапно не переключится и ты не поймешь, что к тебе пришло понимание. Лично я именно так и учился, месяцами искал доказательства, пока в один прекрасный день в голове не щелкало: вдруг все становилось ясно как день!

Многие думают, что для того чтобы быть ученым, нужен какой-то особый склад ума или выдающиеся дарования, однако на самом деле единственное, что реально необходимо, – это увлеченность. Без страстного интереса слишком трудно было бы заставить себя тратить все свое время на поиск ответов. Если его нет, достаточно поверхностных знаний – для сдачи экзамена или успешного теста. Многие думают, что для химии нужны какие-то особенные способности. «Ну, если ты занимаешься химией, ты гений!» – типичная фраза, которую я слышал постоянно не только в университете, но еще и в школе. Только мои близкие друзья не называли меня «вундеркиндом». Они, наоборот, постоянно напоминали мне, что у меня дырявая голова, потому что я все забывал. Они-то знали, что моя страсть к химии ничем не отличалась от их страсти к футболу и мотоциклам.

К сожалению, тех, кто считает, что для понимания химии (или математики и физики) требуется быть «гением», не так уж мало. В результате, считая себя обычными нормальными людьми, они даже и не пытаются понять и узнать побольше о столь «продвинутых» вещах, считая это выше своих способностей. Эта идея получила такое широкое распространение, что в нее поверили даже некоторые ученые.

Постепенно в науке появился новый способ распространения знаний – не между равными, а сверху вниз. Что-то вроде: «Вижу, что ты туповат, но так и быть, разъясню тебе химию простыми словами, как для дураков». То есть не объясню тебе ее как она есть, а милостиво направлю тебя к истинам, которые ты должен принять, ибо они исходят от самого Меня, Уважаемого Химика, Сиятельного Профессора, Величайшего Жреца Большой Науки, обладателя Жезла Знаний.

А правда в том, что химия, как и всякая другая наука, принадлежит всем. И это не значит, что научным сотрудником, исследователем стать просто. Это на самом деле трудно, и очень. Но не труднее, чем стать успешным спортсменом, художником, музыкантом, писателем, журналистом, юристом или предпринимателем. Наука точно так же требует терпения и упорства. Конечно, чтобы стать лауреатом Нобелевской премии или футболистом серии А, нужна некая предрасположенность. Но обычный научный сотрудник-химик ничем особо не отличается от любого другого обычного человека, посвятившего себя иной профессии.

Однако если для большинства ученых совершенно нормально быть поклонниками футбола, музыки или театра, то найти пианиста, в свободное от музыки время посвящающего себя химии, гораздо труднее. А с другой стороны, считается, что тот, кто не знает, кто такой Джакомо Леопарди[1], – невежда, а тот, который не знает законов термодинамики, просто «негений». Ну если, конечно, вы не являетесь уже упомянутым Сиятельным Профессором, для которого те, кто не знает, что такое офиология [2], просто форменные дебилы.

Задача этой книги – постараться не внушить кому-либо мысли о том, что он невежда, а, наоборот, доказать, что, чтобы понять химию, совершенно не обязательно быть «гением». И понять ее вполне можно и без перехода на терминологию уровня дошкольника. Это, конечно, ужасная ересь, но я могу рассказать о химии, не превращая ее в набор сакральных знаний, но показывая, как она работает, на примерах из обычной человеческой деятельности, полной противоречий, сомнений, неуверенности, великих подвигов и серьезных проблем. Я не дам вам готовых решений или указаний. Конечно, в некоторых случаях мой голос будет звучать более уверенно или занимать определенную позицию при выборе аргументов. В этих случаях я буду просто вашим защитником от тех, кто пытается манипулировать наукой в личных интересах, что на самом деле случается нередко и с чем необходимо серьезно бороться. Победить злоумышленников не так-то просто, поскольку трудно уловить разницу между естественными сомнениями в ходе научного поиска и недобросовестными манипуляциями.

Если я сейчас закрою мой ноутбук, смогу ли я обнаружить под подушкой на моей кровати миллион евро наличными? Какая наука смогла бы показать, что это невозможно? Это утверждение, хотя и кажется слишком пафосным, подспудно питает многие антинаучные рассуждения, но распознать его, не обладая специальными глубокими знаниями, весьма непросто. В подобных случаях я буду вынужден просить вас довериться мне, но постараюсь свести количество подобных ситуаций до минимума. Целью этой книги не станет развенчание: я хочу не разрушать, лишь созидать.

Конечно, я не хочу сказать, что после прочтения книги вы сможете понять всю химию. То, что я представляю на ваш суд, это лишь начало. Воспринимайте ее так же, как вы воспринимаете вводный курс игры на фортепиано или гитаре. Вы не станете новым Бахом или Пино Даниэле[3], но узнаете достаточно, чтобы понимать ноты и спеть популярный шлягер у костра с друзьями.

Я постараюсь приложить все усилия, чтобы показать, что химия – это не тот нудный предмет, который мучил вас в школе, и не формулы для заучивания наизусть. Химия – это язык, на котором рассказывают увлекательные истории о приключениях, язык, посредством которого можно описать мироздание и общество.

Приятного чтения!

Лекция 1
На кухне

Химия в тарелке

Лучшее начало разговора о химии – рассказы о ней среди кастрюль и конфорок, где творятся воистину удивительные химические превращения! Когда мы готовим, то бессознательно выполняем множество сложных задач, с которыми исследователь сталкивается в настоящей лаборатории: проверяем чистоту и качество исходных продуктов, взвешиваем, смешиваем, приготовляем растворы, проводим очистку, проводим химическую реакцию, наблюдаем за ними и контролируем получение нужного результата.

Трудно недооценить важность продуктов питания в нашей каждодневной жизни: еда необходима нам не только для поддержания существования, но служит важнейшей основой нашей идентичности и традиций, каждодневных ритуалов и праздничных церемоний. Еда напоминает нам о детстве, успокаивает вкусом и ароматом дома, помогает осознать ход времени и обозначить важнейшие моменты нашей жизни, от первой пиццы до дружеских и романтичных ужинов, от уюта горячего шоколада зимой до радости свадебного торта. Наша эмоциональная связь с вкусной едой переходит в растущее осознание важности правильного питания, полезного для нашего здоровья и необходимого для сохранения природы. За последние несколько десятков лет мы стали внимательнее относиться не только к самому питанию, но и к влиянию сельского хозяйства на экологию, использованию местных продуктов, условиям содержания животных и т. д.

 

Сочетание всех этих факторов делает разговор о питании весьма сложным, прежде всего потому, что неспециалисту трудно разобраться в этом лабиринте альтернативных диет, суперпродуктов, биопродуктов, биодинамического сельского хозяйства, ГМО и различных исследований, демонизирующих или превозносящих то одни пищевые продукты, то другие. Кроме того, если в других темах можно найти более-менее единое мнение экспертов, то в этом случае не только исходные научные данные весьма сложны, но вдобавок их нельзя рассматривать отдельно от общего культурного фона и без учета множества политических и социальных последствий.

Принимая во внимание все эти условия, можно утверждать, что для подробного обсуждения противоречивых научных вопросов, связанных с питанием, пришлось бы написать целую энциклопедию. Тем не менее это вовсе не значит, что любой человек не сможет освоить минимальную базу знаний, которая позволит ему лучше понимать, что находится у него на тарелке и как оно взаимодействует с его телом, и соответственно защищать себя от некоторых веществ.

Химические элементы, атомы и молекулы

Прежде чем мы начнем наше погружение в мир еды, хорошо бы познакомиться с матчастью. Надо всем вместе разобраться с тем, что обозначают некоторые термины, используемые порой абсолютно неправильно, что приводит к великой путанице.

Начнем с самого начала: материя состоит из атомов, а для химика фундаментальными составляющими материи служат именно атомы.

Еще в Древней Греции некоторые философы, такие как, например, Демокрит, предполагали, что окружавший их мир был не однородным, то есть бесконечно делимым на всё более мелкие части, и состоял из фундаментальных частиц – атомов.

Термин «атом» происходит от греческого аtomos и означает «невидимый», и сегодня мы знаем, что и атомы тоже состоят из других, более мелких частиц: протонов, нейтронов и электронов.

Подробное изложение структуры атома – задача совсем не простая, она требует погружения в весьма сложные области современной физики, которые вряд ли удастся постичь интуитивно: квантовую механику. На пару с теорией относительности квантовая механика стоит у истоков научной революции ХХ века, и ее сложность делает решительно невозможным простое, в нескольких словах, объяснение квантовой природы атома, не впадая в вводящие в заблуждение и неприемлемые упрощения. В следующих главах я буду понемногу рассказывать, по мере необходимости, об атомной структуре материи, однако в настоящий момент я ограничусь предупреждением о недопустимости использования прилагательного «квантовый», когда речь идет о чем-либо, отличном от микроструктуры материи. Квантовых медицины и телепатии не существует! Не позволяйте себя обманывать!

Сильно упрощая, мы можем представить себе атом в виде миниатюрной солнечной системы: электроны – отрицательно заряженные частицы, вращающиеся вокруг ядра, которое находится в центре атома и состоит из протонов (положительно заряженных) и нейтронов (не имеющих заряда). Ядро очень маленькое и очень плотное и составляет основную массу атома, а электроны – легчайшие и носятся на большом расстоянии от ядра. Именно количество протонов отличает атомы разных химических элементов друг от друга: у водорода, например, в ядре всего один-единственный протон, поэтому он самый легкий элемент во Вселенной; атом натрия, который плавает в минеральной воде с низким содержанием минералов, включает в себя 23 протона, а уран – самый тяжелый природный элемент периодической таблицы – может похвастаться 92 протонами.

Всего нам известно 118 химических элементов, если включить в список и искусственно синтезированные: самый тяжелый из них, оганесон, вошел в периодическую таблицу только в 2015 году. Если исключить такие элементы, как технеций, который активно используется в медицине, или плутоний, применяемый в атомной индустрии, у большинства искусственных элементов жизнь весьма коротка. Они обычно живут не дольше нескольких долей секунды внутри мощных ускорителей микрочастиц: совершенно неуловимые элементы!

Наше тело включает в себя около пятидесяти элементов. Некоторые из них составляют основу жизни, такие как кислород, кальций и натрий. Роль других в биологических процессах, таких как барий или алюминий, пока не ясна – они поступают в организм с пищей.

Кислород присутствует в нашем теле в большом количестве, составляет 65 % нашей массы, однако с точки зрения количества атомов его хозяином выступает водород, поскольку 62 % человеческого организма состоит из его соединений. Водород и кислород в нашем организме повсюду, они соединяются в молекулу воды, а также присутствуют во всех биомолекулах.

А теперь пришло время представить вам молекулу, например, воды. Молекула состоит из нескольких атомов, соединенных между собой, и обладает свойствами, совершенно отличными от свойств атомов, которые ее образуют. В подавляющем большинстве случаев в природе атомы не существуют сами по себе, «отдельно», потому что стремятся либо связаться друг с другом, либо терять или приобретать электроны, чтобы достичь большей стабильности. К примеру, мы дышим кислородом, но молекулярным – его молекула состоит из двух атомов кислорода, соединенных между собой (О2), а пьем воду, в молекулах которой атом кислорода соединен с двумя атомами водорода (Н2О). В химической формуле нижний индекс указывает количество атомов элемента, содержащихся в молекуле. Например, химическая формула метана (СН4) показывает, что молекула этого газа состоит из четырех атомов водорода и одного углерода.

Иные атомы, имеющие тенденцию к одинокому существованию, теряют и обретают электроны, что превращает их в химические элементы, именуемые ионами. Например, атом натрия состоит из 23 протонов, заряженных положительно, и 23 электронов, заряженных отрицательно (помимо нейтронов, которые не так интересны нам, химикам). Однако натрий, который находится в минеральной воде, обладает всего 22 электронами и поэтому заряжен положительно – потеряв электрон, он утрачивает и его отрицательный заряд. Это отличие кажется минимальным, но имеет весьма важное значение: чистый натрий обладает высокой взрывоопасностью, поскольку реагирует с водой крайне агрессивно, а вот ионы натрия (Na+) абсолютно необходимы для нашей жизни. Точно так же и молекулы хлора, состоящие из двух связанных между собой атомов (Cl2), образуют желтоватый ядовитый газ, чрезвычайно токсичный и опасный. Но если атом хлора обретает лишний электрон, он превращается в ион хлора (Cl-), без которого не может обойтись практически ни один живой организм. Обычная поваренная соль, хлорид натрия (NaCl), состоит из двух ионов – иона натрия (заряженного положительно) и иона хлора (заряженного отрицательно)!

Хлор обнаруживается и в других соединениях, таких как гипохлорит натрия (NaClO), или обычном отбеливателе, соляной кислоте (HCl), которую используют для прочистки труб, снятия известкового налета, для получения перхлоратов, применяющихся в разных отраслях промышленности.

Аналогичные примеры, в которых один и тот же элемент может проявлять самые разные качества в зависимости от способа соединения с другими элементами, мы встретим в этой книге и далее, но уже сейчас понятно, что на это надо постоянно обращать внимание. Запутаться во всех этих сведениях очень просто, если не разделять химический элемент и его соединения.

Конечно, весьма часто мы используем названия химических элементов, говоря на самом деле об их соединениях. Даже в этой книге я часто упоминаю такие выражения, как «нехватка железа»: но при этом я совсем не предлагаю закусить металлической стружкой, чтобы восполнить запасы железа в организме. Как правило, это распространенная и приемлемая форма упрощения. Главное – это видеть суть и понимать, чтó стоит за подобными сокращениями при обсуждении острых вопросов.

Щепотка натрия и гималайская соль

– Е-е-е-е-есть тут кто-ни-и-и-и-будь?

Герой рекламного ролика – частица натрия, одиноко и безнадежно плавающая в минеральной воде[4], – служит прекрасным примером фундаментального для химии понятия, к сожалению, часто игнорируемого: концентрации.

Концентрация – способ показать, какое количество определенного вещества содержится в смеси, содержащей несколько видов молекул разных веществ. Например, типичная концентрация натрия в минеральной воде составляет 5 мг/л.

Короче говоря, это означает, что два литра воды содержат 10 мг ионов натрия (один миллиграмм соответствует тысячной доли грамма, то есть 0,001 г).

Понятие концентрации является фундаментальным для ориентации в мире, что нас окружает, и умения выделять важное в том массиве информации, который на нас ежедневно вываливают массмедиа и социальные сети. Кто из нас не видел в Интернете сообщения типа: «Ученые открыли, что продукт Х вызывает рак/ожирение/диабет/чесотку, потому что содержит вещество Y»? Или: «Ученые обнаружили, что продукт Х защищает от рака/приводит к похудению/омолаживает/приводит к выигрышу в лотерее, поскольку содержит вещество Z».

Увы, речь, как правило, идет о таких небольших количествах, что они не могут оказать вообще никакого влияния или их положительный эффект будет сведен на нет вредным влиянием других веществ. И с этой точки зрения, наша частица натрия служит прекрасным примером. Как мы уже говорили ранее, натрий является важнейшим элементом для нашего здоровья и участвует во многих важных физиологических процессах. Он входит не только в состав поваренной соли, но и почти всех продуктов питания, он присутствует и в рыбе, и в мясе, во фруктах и овощах. Натрий входит и в состав так называемых минеральных солей, соединений элементов, совершенно необходимых для выживания: натрий, калий, магний, марганец и т. д.

Таким образом, натрий определяет и наше физическое состояние. И тем не менее, все знают, что из-за него повышается давление, он вреден, поэтому рекомендуется ограничить содержание соли в пище. Так натрий вреден или полезен? Ответ зависит от количества. Гипонатриемия, при которой содержание натрия в крови становится слишком низким, сопровождается, в зависимости от тяжести заболевания, разными симптомами: от простого недомогания до брадикардии, комы и даже смерти. По этой причине, когда в больнице врач решает, что нам нужна гидратация посредством капельницы, нам вливают сначала не просто воду, а физраствор с содержанием 0,9 % хлорида натрия, и только потом очищенную воду. При дегидратации человек может иметь и повышенную концентрацию натрия в крови (гипернатриемия): и в этом случае симптомы тоже могут быть очень серьезными, вплоть до смерти.

Еще более ярким примером служит калий. Он необходим для жизни, в основном для передачи нервных импульсов, но при этом используется для остановки сердца приговоренных к смертной казни. Как писал Парацельс: «Всё есть яд, и всё есть лекарство. Только доза делает лекарство ядом и яд лекарством».

Поэтому при покупке продуктов всегда следует помнить о концентрации, чтобы не стать жертвой рекламных слоганов, использующих присутствие или отсутствие той или иной молекулы.

Например, в последние годы на полках супермаркетов появились упаковки разноцветной соли из разных источников: розовая гималайская, серая из Бретани или какая-нибудь желтая из тьмутаракани.

Этим продуктам приписываются чудодейственные лечебные свойства, связанные с содержанием минеральных солей, глины, растительных углей и еще чего-нибудь эдакого. Эти вещества содержатся в этой «экзотической» соли и отсутствуют в обычной поваренной. Например, глина придает соли из Бретани характерный цвет. Но проблема в том, что эти элементы присутствуют в столь малых количествах, что, чтобы получить необходимую для организма порцию, нужно поглотить такое количество соли, что плохо станет непременно.

Во всех этих случаях мы говорим о солях, которые больше чем на 95 % состоят из хлорида натрия. Некоторые производители осмелились даже продавать цветную соль с примечанием «пониженное содержание натрия», хотя вместо 99 % они содержали 95 % хлорида натрия. Делать подобные заявления не считается мошенничеством, но покупатель должен остерегаться обмана!

И еще один пример: согласно данным Общества человеческого питания Италии (SINU), каждому из нас необходимо в день потреблять от 10 до 18 мг железа. Розовая гималайская соль, которая своим цветом обязана именно железу, содержит не более 30 мг железа на килограмм соли. Попробуйте подсчитать, сколько соли вам нужно съесть, чтобы достичь дневной нормы железа; также вы можете проверить, сколько железа содержится в шести граммах соли, представляющих собой нашу ежедневную нормальную порцию NaCl.

 

Аналогичные дискурсы можно встретить в самых разных областях человеческого существования. Коричневый тростниковый сахар, с химической точки зрения, почти не отличается от обычного рафинированного. Единственная разница – дополнительный 1 % «нутриентов»: это смешное количество. А некоторые производители просто добавляют немного патоки в рафинированный сахар, чтобы «превратить» его в тростниковый. В этом приеме нет ничего противозаконного – конечный продукт соответствует всем требуемым характеристикам и не несет риска для здоровья.

1Джакомо Леопарди (1798–1837) – крупнейший романтический поэт Италии, выразитель беспросветной «мировой скорби»; в Италии его творчество входит в школьную программу. На русский язык стихи Леопарди переводили Анна Ахматова и Анатолий Найман (прим. пер.).
2Офиология (греч., от ophis – змея, и lego – говорю) – наука о змеях, часть естественной истории, рассматривающая змей (прим. пер.).
3Пино Даниэле (Джузеппе Даниэле, 1955–2015) – итальянский автор-исполнитель и гитарист (прим. пер.).
4Реклама минеральной воды Acqua Lete, в которой одинокий ион натрия, плавая в стакане воды, спрашивает, есть ли еще там ему подобные. В Италии этот рекламный ролик стал распространенным мемом: https://www.youtube.com/watch?v=D9wrpmAwAzM

Издательство:
Издательство АСТ
Книги этой серии: