bannerbannerbanner
Название книги:

Параллельные миры: Об устройстве мироздания, высших измерениях и будущем космоса

Автор:
Митио Каку
Параллельные миры: Об устройстве мироздания, высших измерениях и будущем космоса

000

ОтложитьЧитал

Шрифт:
-100%+

Спутник СОВЕ

При помощи обычного телескопа, рабочей лошадки астрономии еще со времен Галилея, видимо, невозможно разрешить загадку темной материи. Астрономия продвинулась очень далеко, используя обычные оптические средства, имеющиеся на Земле. Однако в 1990-е годы появилось новое поколение астрономических приборов, сконструированных с использованием новейших спутниковых технологий, лазеров и компьютеров, которые полностью изменили лицо космологии.

Одним из первых плодов богатого урожая стал спутник СОВЕ (космический аппарат для изучения реликтового излучения), запущенный в ноябре 1989 года. Если работа Пензиаса и Вильсона подтвердила лишь некоторые данные, вписывающиеся в теорию Большого взрыва, спутник СОВЕ измерил множество параметров, которые в точности соответствовали прогнозам Гамова и его сотрудников об излучении абсолютно черных тел, выдвинутым в 1948 году.

В 1998 году на собрании Американского астрономического общества 1500 ученых внезапно вскочили и разразились бурными аплодисментами при виде фотографий, сделанных спутником СОВЕ, которые практически полностью согласовывались с тем фактом, что температура микроволнового реликтового излучения составляет 2,728 K.

Принстонский астроном Джереми Острайкер заметил: «Когда были обнаружены окаменелости в скалах, это совершенно четко обозначило происхождение видов. Что ж, спутник СОВЕ нашел окаменелости [Вселенной]»{50}.

Однако фотографии, сделанные со спутника СОВЕ, были довольно размытыми. Например, ученые хотели проанализировать горячие точки, или флуктуации космического фонового излучения, которые должны были составлять около одного градуса в поперечнике. Но оборудование спутника СОВЕ было способно уловить флуктуации только семи и более градусов в поперечнике, оно не было достаточно чувствительным, чтобы обнаружить эти маленькие горячие точки. Ученые были вынуждены ждать результатов работы спутника WMAP, запуск которого ожидался в начале века; они надеялись, что новые данные помогут разрешить массу вопросов и загадок.

Глава 4
Расширение и параллельные вселенные

Ничего не происходит из ничего.

Лукреций


Я допускаю, что наша Вселенная и в самом деле появилась ниоткуда около 10 млрд лет назад… Я выдвигаю скромное предположение о том, что возникновение нашей Вселенной является одним из тех событий, что происходят время от времени.

Эдвард Трайон


Вселенная – это полностью бесплатный ланч.

Алан Гут

В классическом научно-фантастическом романе Пола Андерсона «Тау Ноль» (Tau Zero) космический корабль под названием Leonora Christine запускают в космос с заданием достичь близлежащих звезд. На борту корабля находятся 50 человек; во время путешествия к новой звездной системе корабль может развивать околосветовую скорость. Что еще более важно, на корабле действует принцип теории относительности, который гласит, что чем быстрее движется корабль, тем больше замедляется время внутри корабля. А потому путешествие к близлежащим звездам, которое заняло бы десятилетия с точки зрения людей на Земле, для астронавтов длится лишь несколько лет.

Корабль представляет собой чудо техники; он приводится в действие прямоточными воздушно-реактивными двигателями, которые черпают водород из космоса, а затем сжигают его, получая неограниченное количество энергии. Корабль движется настолько быстро, что экипаж даже может наблюдать доплеровское смещение звездного света: звезды впереди кажутся голубоватыми, а звезды позади – красноватыми.

Затем происходит катастрофа. На расстоянии 10 световых лет от Земли корабль проходит сквозь межзвездное пылевое облако и попадает в область турбулентности, в результате чего временно перестает функционировать система торможения. Перепуганный экипаж оказывается в плену на вышедшем из-под контроля корабле, который все сильнее и сильнее разгоняется, приближаясь к скорости света. Члены экипажа беспомощно наблюдают за тем, как неуправляемый корабль за какие-то минуты пересекает целые звездные системы. За год корабль проносится сквозь половину галактики Млечный Путь. Бесконтрольно ускоряясь, корабль мчится мимо галактик; на это уходят месяцы, в то время как на Земле проходят миллионы лет. Вскоре скорость корабля настолько приближается к световой (τ0), что члены экипажа становятся свидетелями космических катастроф, на их глазах старится сама Вселенная.

В конце концов они видят, что изначальное расширение Вселенной прекращается и обращается вспять – Вселенная сжимается. Температура резко возрастает, и члены экипажа понимают, что корабль движется навстречу Большому сжатию. Они молятся про себя, видя, что температура растет, галактики начинают сливаться в единое целое – космический первоатом. Кажется, что они неминуемо встретят свою смерть в огненном катаклизме.

Их единственная надежда на то, что вещество взорвется и разлетится в пределах ограниченной области, а они на большой скорости проскользнут мимо. Чудом их защита срабатывает, когда они пролетают мимо первоатома и оказываются свидетелями рождения новой Вселенной. Когда Вселенная вновь расширяется, их восхищенным взорам предстает картина творения новых звезд и галактик. Им удается отремонтировать корабль, они тщательно рассчитывают курс, направляясь к достаточно взрослой галактике, которая содержит элементы высшего порядка, делающие жизнь в ней возможной. Наконец им удается обнаружить планету, где можно жить, и основывают там колонию, давая начало новому человечеству.

Эта история была написана в 1967 году, когда среди астрономов бушевали яростные споры о том, какова же конечная судьба Вселенной: погибнет ли она от Большого сжатия или Большого охлаждения, будет ли она бесконечно пульсировать или продолжит свое существование в стационарном состоянии бесконечно? С тех пор спор, кажется, нашел свое разрешение, и появилась новая теория – теория инфляции.

Рождение теории инфляции

«Это нечто невероятное», – такую запись сделал Алан Гут в своем дневнике в 1979 году. Он был воодушевлен сознанием того, что, возможно, натолкнулся на одну из величайших теорий космологии. Гут впервые за 50 лет подверг основательному пересмотру теорию Большого взрыва, сделав конструктивное наблюдение: он смог решить некоторые из глубочайших загадок космологии, предположив, что Вселенная подверглась гиперинфляции (ускоренному расширению) в момент своего рождения – расширению гораздо более быстрому, чем считало большинство физиков. Гут обнаружил, что, учитывая гиперрасширение, он может безо всяких усилий разрешить массу космологических вопросов, которые не поддавались никакому объяснению. Этой теории предстояло произвести революцию в космологии. (Последние космологические данные, включая результаты, полученные со спутника WMAP, согласуются с прогнозами, которые дает эта теория.) Это не только единственная действенная космологическая теория – она же простейшая и наиболее надежная.

Замечательно, что столь простая теория оказалась в состоянии разрешить так много сложных космологических вопросов. Одной из проблем, которые так элегантно разрешала теория инфляции, была проблема плоскостности Вселенной. Астрономические данные показали, что кривизна Вселенной очень близка к нулю: по сути, она намного ближе к нулю, чем до этого считали многие астрономы. Это могло бы объясняться тем фактом, что Вселенная, подобно шарику, который быстро надувают, стала более плоской за период расширения. Мы подобны муравьям, ползающим по поверхности шарика, – мы слишком малы, чтобы заметить очень небольшую кривизну поверхности. Инфляция настолько «вытянула» пространство-время, что оно кажется плоским.

Историческим в открытии Гута было то, что он применил физику элементарных частиц, занимающуюся анализом мельчайших частиц в природе, к космологии, изучению Вселенной во всей ее целостности, включая происхождение. Теперь мы понимаем, что глубочайшие загадки Вселенной нельзя решить без физики чрезвычайно малого – мира квантовой теории и физики элементарных частиц.

Поиски объединения

Гут родился в 1947 году в Нью-Брансуике (штат Нью-Джерси). В отличие от Эйнштейна, Гамова и Хойла, в жизни Гута не было судьбоносного момента, толкнувшего его в мир физики. Ни его отец, ни мать не получили высшего образования и не проявляли интереса к науке. Но, по собственному признанию Алана, его всегда восхищала связь математики с законами природы.

В Массачусетском технологическом институте в 1960-е годы он серьезно рассматривал возможность заняться физикой элементарных частиц. В особенности его восхищало всеобщее возбуждение, причиной которого стало новое течение в физике – поиски объединения всех основных сил. Святым Граалем физики были объединяющие мотивы, которые могли бы объяснить все тонкости строения Вселенной самым простым и связным образом. Целую вечность физики блуждали в поисках этого Грааля. Со времен древних греков ученые считают, что Вселенная, которую мы видим сегодня, представляет собой обломки чего-то гораздо более простого, и наша цель – раскрыть суть этого простого.

За две тысячи лет исследований природы вещества и энергии физики открыли, что механизм Вселенной приводят в действие всего четыре основные силы. (Ученые пытались и пытаются найти возможную пятую силу, но до сих пор все результаты исследований в этом направлении были отрицательными или неубедительными[13].)

 

Первая сила – гравитационное взаимодействие, которое удерживает Солнечную систему как единое целое и движет планеты по их небесным орбитам в Солнечной системе. Если гравитацию неожиданно «выключить», то звезды в небесах взорвутся, Земля рассыплется и нас всех выбросит в открытый космос со скоростью около полутора тысяч километров в час[14].

Вторая сила – электромагнитное взаимодействие, которое освещает наши города, заполняет мир телевизорами, сотовыми телефонами, радиоприемниками, лазерными лучами и сетью Интернет. Если внезапно выключить электромагнитное взаимодействие, то цивилизацию тут же отбросит на век-другой в прошлое, в темноту и безмолвие. Это наглядно продемонстрировала авария энергосистемы в 2003 году, парализовавшая весь северо-восток США. Если мы рассмотрим электромагнитную силу в микроскоп, то увидим, что она состоит из крошечных частиц, или квантов, называемых фотонами.

Третья сила – слабое ядерное взаимодействие, отвечающее за радиоактивный распад. Это слишком незначительный фактор, чтобы удерживать атом как единое целое, он позволяет ядру разделиться на более мелкие составляющие, или распасться. Радиоактивные приборы в больницах во многом основываются на слабом ядерном взаимодействии. Слабое ядерное взаимодействие также способствует разогреву земного ядра посредством радиоактивных веществ, что становится причиной извержения вулканов. Слабое ядерное взаимодействие, в свою очередь, основывается на взаимодействии электронов и нейтрино (призрачные частицы, практически не имеющие массы и способные проходить сквозь триллионы километров твердого свинца, ни с чем не сталкиваясь). Эти электроны и нейтрино взаимодействуют, обмениваясь частицами – W- и Z-бозонами.

Сильное ядерное взаимодействие скрепляет ядра атомов. Без этой силы ядра бы разделились на части, атомы бы распались, а вся наша реальность «расползлась» бы. Сильное ядерное взаимодействие отвечает за примерно сотню элементов, которые заполняют Вселенную. Вместе с тем сильное и слабое ядерные взаимодействия отвечают за свет, который испускают звезды согласно уравнению Эйнштейна Е = mc². Без ядерного взаимодействия Вселенная погрузилась бы во тьму, температура на Земле резко упала бы, а океаны превратились бы в ледники.

Удивительной чертой этих четырех сил является то, что все они принципиально отличаются друг от друга, обладая различными свойствами и имея каждая свои достоинства. Например, гравитация намного слабее трех остальных сил, она в 1036 раз слабее электромагнитного взаимодействия. Земля весит 6 трлн кг, и все же огромный вес и гравитация могут быть легко уравновешены с помощью электромагнитной силы. Даже ваша расческа может поднять клочки бумаги с помощью статического электричества, тем самым преодолевая силу гравитации. К тому же гравитация только притягивает свои объекты, электромагнитная же сила может как притягивать, так и отталкивать в зависимости от заряда частиц.

Объединение на уровне теории Большого взрыва

Один из фундаментальных вопросов, с которым столкнулась физика, таков: почему Вселенная должна приводиться в действие четырьмя различными взаимодействиями? И почему эти четыре взаимодействия должны быть столь непохожими друг на друга, обладать разными качествами, различной физикой и по-разному взаимодействовать?

Эйнштейн первым поставил перед собой цель объединить эти четыре силы при помощи единой связной теории поля, начав с объединения гравитации с электромагнитным взаимодействием. Он не добился успеха, потому что обогнал свое время: тогда слишком мало было известно о сильном взаимодействии, чтобы создать абсолютно реалистичную единую теорию поля. Но пионерская работа Эйнштейна раскрыла глаза целому миру физиков на возможность существования теории всего.

Цель единой теории поля казалась в высшей степени недостижимой в 1950-е годы, особенно в момент, когда в физике элементарных частиц царил полный хаос: ускоритель атомных частиц расщеплял ядро с целью обнаружить «элементарные составляющие» вещества, а на выходе при эксперименте обнаруживались сотни новых частиц. Физика элементарных частиц стала терминологическим противоречием, космической шуткой. Древние греки считали, что при расщеплении субстанции на основные составляющие все упрощается. Но все получилось с точностью до наоборот: физики изо всех сил пытались найти достаточно букв греческого алфавита для обозначения всех новых частиц. Дж. Роберт Оппенгеймер пошутил, что Нобелевскую премию по физике должен получить физик, который не открыл в этом году новую частицу. Нобелевский лауреат Стивен Вайнберг начал сомневаться, способен ли человеческий разум вообще постичь секрет ядерного взаимодействия.

Эта неразбериха несколько улеглась, когда Марри Гелл-Ман и Джордж Цвейг из Калифорнийского технологического института предложили теорию кварков – составляющих протонов и нейтронов. Согласно теории кварков три кварка составляют протон или нейтрон, а кварк и антикварк составляют мезон (частицу, удерживающую частицы ядра). Это было лишь частным решением (поскольку сегодня мы знаем, что мир заполнен различными видами кварков), но тогда оно влило новую струю энергии в пребывающую в спячке область науки.

В 1967 году физики Стивен Вайнберг и Абдус Салам совершили ошеломляющий прорыв, доказав возможность объединения слабого ядерного и электромагнитного взаимодействий. Они создали новую теорию, согласно которой электроны и нейтрино (называемые лептонами) взаимодействуют друг с другом путем обмена новыми частицами, названными W- и Z-бозонами, а также фотонами. Рассматривая W- и Z-бозоны и фотоны на общем основании, они создали теорию, объединяющую обе силы. В 1979 году Стивен Вайнберг, Шелдон Глэшоу и Абдус Салам получили Нобелевскую премию за совместную работу в области объединения двух из четырех сил – электромагнитного и слабого ядерного взаимодействий, – а также за активные исследования в области сильного ядерного взаимодействия.

В 1970-е годы физики провели тщательный анализ данных, полученных на ускорителе частиц Стэнфордского центра, обстреливающем цель мощными зарядами электронов, чтобы исследовать строение протона. Они обнаружили, что сильное ядерное взаимодействие, удерживающее кварки внутри протона, можно объяснить, введя новые частицы (названные глюонами), которые являются квантами сильного ядерного взаимодействия. Природу связующей силы, удерживающей протон от распада, можно было бы объяснить тем, что составляющие его кварки обмениваются между собой глюонами. Это привело к созданию новой теории сильного ядерного взаимодействия, названной квантовой хромодинамикой.

Итак, к середине 1970-х годов стало возможным объединить три взаимодействия из четырех (кроме гравитации) и получить так называемую Стандартную модель – теорию кварков, электронов и нейтрино, которые взаимодействовали путем обмена глюонами, W- и Z-бозонами и фотонами. Эта модель стала результатом десятилетий мучительной работы и исследований в области физики частиц. В настоящее время Стандартная модель способна структурировать все без исключения экспериментальные данные, имеющие отношение к физике частиц.

Хотя Стандартная модель – одна из наиболее успешных физических теорий всех времен, она весьма безобразна. Сложно поверить, что на фундаментальном уровне можно оперировать теорией, которая столь топорно описана. Например, в этой теории существует 19 произвольных параметров, которые рассчитываются эмпирически (то есть различные массы и силы взаимодействия не определяются теорией, их нужно выводить экспериментальным путем; в идеале же, то есть в подлинно объединяющей теории, эти константы должны определяться самой теорией, а не зависеть от внешних экспериментов).

Далее, в ней существуют три точные копии элементарных частиц, называемые поколениями. Сложно поверить, что природа на самом фундаментальном уровне будет использовать три точные копии субатомных частиц. Если не считать массы, то эти частицы – точные копии. (Например, такими копиями электрона являются мюон, масса которого в 200 раз больше массы электрона, и тау-частица с массой в 3500 раз больше.) Наконец, в Стандартной модели нет никакого упоминания о силе гравитации, хотя гравитация – пожалуй, наиболее всепроникающая сила во Вселенной.

Поскольку Стандартная модель, несмотря на ее потрясающий экспериментальный успех, кажется надуманной, физики пытались создать еще одну теорию, или теорию великого объединения, которая рассматривала бы кварки и лептоны на общем основании. Она также рассматривала глюон, W- и Z-бозоны и фотон на одном уровне. (Однако эта разработка не смогла стать «окончательной теорией», поскольку гравитация в ней подозрительным образом не учитывалась: ее считали слишком сложной для слияния с остальными силами, как мы это увидим.)

Программа объединения, в свою очередь, ввела в космологию новую парадигму: Идея была очень простой и изящной: в момент Большого взрыва все четыре основные силы объединились в единую связанную силу – загадочную сверхсилу. Четыре силы были равны друг другу по значимости и являлись частью единого связного целого. Однако, когда Вселенная начала стремительно расширяться и остывать, изначальная сверхсила начала «расщепляться» и от нее одна за другой начали «отпадать» различные силы.

Согласно этой теории, остывание Вселенной после Большого взрыва аналогично замерзанию воды. Когда вода находится в жидком состоянии, она вполне однородна и поверхность ее гладкая. Однако при замерзании внутри ее объема образуются миллионы крошечных ледяных кристалликов. Когда жидкая вода замерзает, ее изначальная однородность нарушена, поскольку лед содержит трещины, пузырьки и кристаллы.

Другими словами, сегодня мы видим, что Вселенная ужасно повреждена. Она совсем неоднородна и несимметрична, она состоит из неровных горных цепей, вулканов, ураганов, каменистых астероидов и взрывающихся звезд; при этом отсутствует всякое единство, более того, мы видим, что четыре основные силы никак не связаны друг с другом. Но причина того, что Вселенная так искорежена, – это то, что она уже старая и холодная.


Хотя Вселенная возникла в состоянии совершенного единства, до сегодняшнего дня она прошла много фазовых переходов, или изменений состояния, при которых вселенские силы одна за другой освобождались от взаимодействия с остальными по мере остывания Вселенной. Физикам предстоит заглянуть в прошлое, воссоздать этапы изначального формирования Вселенной (в состоянии совершенного единства), которые привели к тому повреждению Вселенной, которое мы видим на сегодняшний день.

Таким образом, чтобы получить ключ к разгадке, необходимо точно понять, как произошли эти фазовые переходы с момента создания Вселенной, которые ученые называют спонтанными нарушениями. Будь то таяние льда, кипение воды, образование дождевых облаков или охлаждение после Большого взрыва, фазовые переходы могут соединять два совершенно разных состояния вещества. (Чтобы показать, насколько мощными могут быть эти фазовые переходы, художник Боб Миллер загадал загадку: «Как можно подвесить 200 000 кг воды в воздухе без всякой опоры?»{51} Ответ: «Образовать облако».)

50Scientific American, July 1992, p. 17.
13Открытый в ЦЕРН хиггсовский бозон обеспечивает пятую силу, так называемую юкавскую (в честь японского физика Юкавы). Это короткодействующая сила (аналогично слабой силе), и ее величина для каждой элементарной частицы определяется массой этой частицы. Ведутся, однако, поиски и других новых сил, именно о них и ведет речь автор. – Прим. науч. ред.
14Автор здесь неправ, поскольку учел только вращение Земли, в то время как основную скорость составляет вращение вокруг центра галактики, что составляет сотни километров в секунду. – Прим. науч. ред.
51Cole, p. 43.
Бесплатный фрагмент закончился. Хотите читать дальше?

Издательство:
Альпина Диджитал