Редактируя человечество: Революция CRISPR и новая эра изменения генома
000
ОтложитьЧитал
Переводчик: Мария Смирнова
Научный редактор: Сергей Киселев, д-р биол. наук
Редактор: Ольга Нижельская
Издатель: Павел Подкосов
Руководитель проекта: Александра Казакова
Ассистент редакции: Мария Короченская
Художественное оформление и макет: Юрий Буга
Корректоры: Елена Воеводина, Елена Рудницкая
Верстка: Максим Поташкин
Все права защищены. Данная электронная книга предназначена исключительно для частного использования в личных (некоммерческих) целях. Электронная книга, ее части, фрагменты и элементы, включая текст, изображения и иное, не подлежат копированию и любому другому использованию без разрешения правообладателя. В частности, запрещено такое использование, в результате которого электронная книга, ее часть, фрагмент или элемент станут доступными ограниченному или неопределенному кругу лиц, в том числе посредством сети интернет, независимо от того, будет предоставляться доступ за плату или безвозмездно.
Копирование, воспроизведение и иное использование электронной книги, ее частей, фрагментов и элементов, выходящее за пределы частного использования в личных (некоммерческих) целях, без согласия правообладателя является незаконным и влечет уголовную, административную и гражданскую ответственность.
© Kevin Davies, 2020
© Издание на русском языке, перевод, оформление. ООО «Альпина нон-фикшн», 2024
* * *
Посвящается моим родителям
В память о Майкле Уайте (1959–2018), писателе, музыканте, друге
Не гни папин ген.
В. И. ИВАНОВ
Уважаемый читатель! Вы держите в руках книгу, которую невозможно написать, и вот почему: ее предмет, редактирование генома, меняется и развивается почти ежедневно. Пока напишешь и сдашь в печать – уйма нового произойдет! Кевин Дейвис за эту нерешаемую задачу все-таки взялся и написал прекрасное, увлекательное «введение в геномное редактирование». Самых последних результатов в этой необычайной области вы здесь не найдете, зато овладеете всем аппаратом, который позволит за ними грамотно следить.
Человеку вообще свойственно браться за нерешаемые задачи. Это хорошо описано в знаменитом эпизоде из книги «Понедельник начинается в субботу», в котором Саша Привалов и Кристобаль Хунта упрямо берутся за не имеющую решения задачу. Прекрасный пример – алхимия. Люди 5000 лет пытались разные металлы превратить в золото, искали философский камень. Я об этом часто думаю, так как моя дорога на работу лежит мимо лаборатории, где Лоуренс в 1931 г. создал циклотрон – действующий философский камень, создать который ни древнеегипетским, ни древнегреческим алхимикам было невозможно: структура атома стала ясна лишь в 1911 г., а без этого циклотрон не построишь!
Мечте о геномном редактировании – полвека. Надо честно признаться, что когда эту мечту высказали Фридман и Роблин в знаменитой статье 1972 г. в журнале Science, то было в этом нечто от алхимии. На тот момент никто в мире не знал, как за это браться! Понятно было только, что взяться за нее надо, и вот почему. Гены были открыты Менделем в 1866 г., а то, что у людей тоже есть гены, открыл Гэррод в 1902 г. Скоро стало понятно, что бессмертное пушкинское «Но вижу твой жребий на светлом челе» можно понимать с точки зрения генетики, то есть заболевания бывают наследственные. На историю России оказало влияние одно такое заболевание – гемофилия, ею страдал царевич Алексей, сын Николая II. Как ген устроен, биологам стало понятно в 1953 г., и почти одновременно Инграм открыл, что серповидноклеточная анемия – заболевание генетическое. Из этого вывод был простой: если исправить опечатку в ДНК, мы эту анемию вылечим!
Путь к решению этой проблемы прекрасно описывает Дейвис в своей книге. Мне посчастливилось быть непосредственным участником поиска этого решения и одним из тех, кто это решение нашел. Могу тут только опять процитировать Пушкина, гениально осознавшего, какую роль в научных открытиях играет «случай, бог изобретатель». Без всякой ложной скромности скажу, что мне повезло: я за эту проблему взялся, когда в руках уже были предпосылки решения, в значительной степени созданные моей однокурсницей по биологическому факультету МГУ – Мариной Бибиковой (см.: Bibikova and Carroll Science 2003). Кроме того, мне необычайно повезло с командой: мои соратники в этой работе, Майкл Холмс и Филип Грегоги, – ученые выдающиеся. Мы себя в шутку называли «три мушкетера», так как работали по принципу «один за всех, и все за одного». Да и термин «редактирование генома» в мою голову не пришел, а уже в ней был. Мой дед, Урнов Михаил Васильевич, и отец, Урнов Дмитрий Михайлович, всю профессиональную жизнь редактировали – но не гены, конечно же, а прозу. Отец был главным редактором журнала «Вопросы литературы». Термины «верстка», «гранки» и «макет» я освоил уже в первом классе и с детства привык отвечать на вопросы типа «а вот Урнов Д. М., который редактировал собрания сочинений Вальтера Скотта, Джозефа Конрада, Вильяма Шекспира (и проч. и проч.), кем тебе приходится?».
Если бы мне тогда, в конце 2000-х, сказали, каких успехов достигнет геномное редактирование, я бы засмеялся. Ведь на сегодняшний день эта технология излечила ту самую серповидноклеточную анемию и не только. На горизонте реальном, а не научно-фантастическом – лекарства от рака, слепоты и заболеваний сердечно-сосудистой системы.
Прогресса без отрицательных последствий не бывает. Остроумный палиндром в эпиграфе, придуманный замечательным советским биофизиком Валерием Ивановичем Ивановым (у которого мне посчастливилось школьником стажироваться), явно был незнаком «ученому», имя которому – Герострат (а в реальности – Джункуэй Хе). Этот человек, ничего, кроме ненормативной лексики не заслуживающий, нарушил элементарные нормы и этики, и медицины, и науки. О нем Дейвис пишет подробно, а мне, честно признаться, тошно это описание читать. «Благодаря» этому фанатику и шарлатану каждый профессиональный геноредактор вынужден отвечать на вопросы типа «ну как там – новорожденных на заказ редактируете?». Краткий ответ: нет и никогда не будем.
Надежда тут у меня одна. Геномное редактирование – область относительно молодая. Открытие, которое ускорило его развитие на три порядка, было сделано моей выдающейся коллегой по факультету Дженнифер Дудной всего 10 лет назад. Теперь наша основная задача – разрабатывать и вводить в клинические испытания новые геноредакторы-лекарства от тяжелых наследственных заболеваний как детей, так и взрослых (а заболеваний таких – более 5000!). Этим все больше и больше занимаются не только биотехнологические фирмы, но и вузы. Тут мне опять повезло, так как я именно такие разработки и веду в университете Беркли в сотрудничестве с самой Дженнифер Дудной. Дженнифер мне однажды сказала, что «генолекарства должны быть доступны всем». Именно этим мы круглые сутки и занимаемся.
Закончу цитатой из «Авиамарша» Германа и Хайта, с которым вырос, как и все советские дети: «Мы рождены, чтоб сказку сделать былью». Книга Кевина Дейвиса прекрасно описывает, как сказочные мечты полувековой давности об исправлении ошибок в ДНК именно такой былью и становятся.
Федор Урнов,профессор кафедры молекулярной и клеточной биологии Калифорнийского университета в Беркли
День благодарения, ноябрь 2018 г. Я приготовился к пятнадцатичасовому перелету из Нью-Йорка в Гонконг, где должен был принять участие в научной конференции. В конце этого длинного пути меня ожидало лишь трехдневное собрание специалистов по биоэтике и не предвиделось ничего особенного. Даже Альта Чаро, член оргкомитета, опасалась, что это может оказаться «скучным саммитом»[1].
Когда мы подлетали к полярному кругу, я закрыл свой ноутбук, заказал порцию лапши и стал листать меню полетных развлечений. Мой выбор пал на боевик «Рэмпейдж» (Rampage, 2018). После взрыва на борту международной космической станции на Землю попадают контейнеры с таинственным химическим веществом. Естественно, один из них угодил на территорию зоопарка Сан-Диего. Происходит заражение гориллы-альбиноса Джорджа – любимца героя Дуэйна Скалы Джонсона, работающего там приматологом. Два других животных, крокодил Лиззи и волк Ральф, мутируют накануне транспортировки в Чикаго. Все это выглядело смешно и глупо, хотя и было несколько занимательно, но мутации, наносившие в кино вред животным, были причиной того, что я отправился в такое продолжительное путешествие. «Вы слышали о CRISPR[2]?» – спрашивает Наоми Харрис нашего мускулистого героя.
Он не слышал. Я и сам узнал о CRISPR лишь несколько лет назад. Саммит в Гонконге должен был стать продолжением встречи по этическим аспектам редактирования генома человека, проведенной в 2015 г. в Вашингтоне, округ Колумбия. Дебаты начались, как только появилась революционная технология устранения дефектов ДНК и регуляции работы генов со звучной аббревиатурой CRISPR. Ранее в том же году ученые из Китая впервые внесли изменения в структуру генов эмбриона человека в чашке Петри. Это был предварительный эксперимент, проведенный на нежизнеспособных эмбрионах (женщины от них не забеременеют), но это вызвало опасения, что кто-то где-то может попытаться переписать генетический код человека. Одна из бесспорных основоположников технологии редактирования генома Дженнифер Дудна призвала начать обсуждение этого метода на международном уровне: следует ли ограничить его использование, а может быть, и запретить? Председатель конференции в Вашингтоне лауреат Нобелевской премии Дэвид Балтимор обратил внимание участников на сюжет книги «О дивный новый мир» [Олдоса Хаксли] и предупредил, что мы сталкиваемся с «перспективой обладания новыми и мощными средствами контроля над природой человеческой популяции». Я предположил, что на этот раз, спустя три года, те же лица будут высказывать похожие абстрактные опасения.
В понедельник, 26 ноября, после полудня, я приземлился в Гонконге и включил телефон. Пока я, уставший, просматривал свой Twitter, до меня не сразу дошло, что именно я читаю. Научный репортер Антонио Регаладо опубликовал сенсационную новость: ученый из Китая наблюдает, как проходит беременность, а также развитие плода с отредактированным геномом. Это дало основания предполагать, что где-то уже могли родиться дети, гены которых были изменены с помощью CRISPR[3]. В течение нескольких часов эти слухи подтвердились, в том числе агентством Associated Press. В опубликованной ими истории рассказывалось о рождении генетически отредактированных близнецов[4]. Хештег #CRISPRbabies (рус. #CRISPRдети) стал популярным.
Более того, 34-летний ученый из Китая Хэ Цзянькуй описал свой исторический подвиг в серии видеороликов на YouTube. «Две красивые маленькие китаянки, названные Лулу и Нана, крича, появились на этот свет несколько недель назад, – сказал он на ломаном английском. – Сейчас девочки находятся дома со своей мамой Грейс и папой Марком». Имя Хэ Цзянькуй мне ни о чем не говорило, но этот человек должен был выступать на конференции. Появится ли он в итоге на ней? Разрешат ли ему организаторы участвовать?
Через два дня Хэ Цзянькуй действительно попытался объяснить, что именно он сделал и, самое главное, почему. Это был один из самых нашумевших научных докладов: ученый выступал перед сотнями журналистов и фотокорреспондентов, в прямой интернет-трансляции это выступление увидели еще почти два миллиона зрителей. Мне довелось быть непосредственным участником этого события. Когда Хэ Цзянькуй появился в битком набитом зале и прошел по сцене, были слышны лишь щелчки затворов двух сотен фотоаппаратов. Возмущенный ученый из Америки посылал посты о том, что это пародия на коронование научной знаменитости. Я же понимал, что мы наблюдаем за тем, как идет обреченный на казнь человек. Действительно, к тому времени, как Хэ Цзянькуй покинул сцену и вернулся домой в Шэньчжэнь, рухнули все его мечты об известности и национальной славе. Вместо этого его ждали домашний арест, позор и через год – тюрьма[5].
Случай с #CRISPRbabies знаменует собой поворотный момент в истории человечества. Недаром документальный фильм Кена Бёрнса «Ген» (The Gene), основанный на великолепной одноименной книге Сиддхартхи Мукерджи, начинается с того, что коллега Хэ Цзянькуя осторожно вводит CRISPR в эмбрион человека. «Крисператор детей», как окрестил его журнал The Economist[6], вырвал из рук природы контроль над наследственностью, по крайней мере в отношении одного из 20 000 генов, составляющих геном человека.
Всего за пятнадцать лет до этого международный коллектив ученых завершил проект «Геном человека» (Human Genome Project, HGP), воссоздав почти все страницы книги жизни – сценарий из 3,2 млрд букв, составленных из четырехбуквенного алфавита. Группа ученых из Лестерского университета опубликовала данные о полной последовательности в виде энциклопедии, состоящей более чем из сотни томов, где каждой хромосоме соответствовал свой цвет переплета. Этот объем информации чудесным образом упакован в двадцать три пары хромосом, находящихся в триллионах клеток вашего организма. Имея под рукой последовательность генома человека, ученые теперь могут приступить к выявлению генов, повреждение которых приводит к развитию тысяч редких наследственных заболеваний. Кроме того, появилась возможность определять генетические варианты и буквенные ошибки, которые формируют нашу предрасположенность к распространенным болезням, таким как сахарный диабет, сердечно-сосудистые заболевания и психические расстройства. Еще до этой генетической революции ученые мечтали использовать определенные последовательности ДНК в рамках генной терапии, вводя в клетки пациентов здоровые гены с целью заменить ими дефектные. Однако идея о ДНК-хирургии – устранении повреждений в генах путем вырезания и вставки участка ДНК непосредственно в геном пациента – была лишь фантазией.
Все изменилось, когда летом 2012 г. разгорелся ажиотаж вокруг CRISPR. Двое ученых – женщина-микробиолог из Франции Эмманюэль Шарпантье и женщина-биохимик из США Дженнифер Дудна – сообщили о революционном открытии. Они воспользовались знаниями многих исследователей со всего мира, которые трудились, не привлекая внимания общественности, стараясь понять биологическое предназначение CRISPR. Эти короткие палиндромные повторы, регулярно расположенные группами (от англ. Clustered Regularly Interspaced Short Palindromic Repeats), были известны как важнейший компонент естественной иммунной системы бактерий, микробного щита противоракетной обороны, призванной нейтрализовать атаки определенных вирусов. Ученые из лабораторий Дудны и Шарпантье изменили конфигурацию молекулярного механизма, создав инновационный метод точного определения и вырезания генов и других ДНК-мишеней. Спустя полгода несколько групп, возглавляемых Фэн Чжаном из Института Броуда и Джорджем Чёрчем из Медицинской школы Гарвардского университета, показали, что с помощью CRISPR можно редактировать ДНК клеток млекопитающих. Возможность точного редактирования практически любой последовательности ДНК, будь то геном человека, бактерии или любого другого организма, была невероятной. По простоте использования метод CRISPR был не сравним ни с одним из известных на тот момент методов. Концептуальный, а не технический прорыв, который изменит науку и медицину, а возможно, и саму природу человечества.
Благодаря этим исследователям и многим другим ученым по всем миру теперь мы можем с беспрецедентной легкостью и точностью управлять наследственностью. Мы можем стирать или переписывать варианты генов, вызывающих болезни у человека или эмбриона. Можем изменять геномы домашних животных, растений и паразитов, чтобы улучшить жизни миллионов людей, особенно в развивающихся странах, страдающих от изменения климата. Можем спасать исчезающие виды и даже воссоздавать те, что уже давно погибли. И хотя мы еще недостаточно знаем о сложности генетических взаимодействий, лежащих в основе нашей предрасположенности к сахарному диабету, сердечно-сосудистым заболеваниям и психическим расстройствам, не говоря уже о формировании нашего поведения, личности и интеллекта, мы можем представить день, когда нам удастся улучшить или изменить некоторые из этих характеристик.
Преимущество CRISPR заключается в том, что эта методика проще, быстрее и гораздо дешевле, чем более ранние разработки по редактированию генома. Ученые и специалисты отредактировали целый Ноев ковчег растений и животных: фрукты и овощи, насекомых и паразитов, сельскохозяйственные культуры и домашний скот, кошек и собак, плодовых мушек и рыбок данио-рерио, мышей и человека. Биохакеры-любители начали экспериментировать на себе и своих питомцах. Самые престижные научные журналы захлестнуло цунами статей, поскольку ученые применяли CRISPR ко всему, до чего могли дотянуться. CRISPR-сумасшествие, как назвал это журнал Science, охватило все средства массовой информации[7]. The Economist на своей обложке изобразил невинного ползающего младенца, а рядом – список того, чего можно для ребенка этой технологией добиться, включая абсолютный слух, стопроцентное зрение и отсутствие вероятности облысеть[8]. The Spectator шутливо заметил, что «евгеника возвращается», добавив к этому карикатуру с изображением ребенка, сидящего в чашке Петри (предпочтительным цветом волос был указан «не рыжий»)[9]. Журнал MIT Technology Review назвал CRISPR «величайшим биотехнологическим открытием»[10]. А заглавная статья Эми Максмен в Wired гласила: «Больше никакого голода, загрязнений, болезней… И жизни, которую мы знаем»[11].
Когда я учился на генетика в 1980-х гг., то входил в группу ученых, отчаянно занимавшихся поиском дефектных генов в геноме человека, вызывающих мышечную дистрофию Дюшенна (МДД) и муковисцидоз (кистозный фиброз). Мы были буквально генетическими детективами, которые охотятся за генами и мутациями, угрожающими жизни человека или сокращающими ее продолжительность[12]. В нашей лаборатории в больнице Святой Марии в Лондоне мы знакомились с пациентами, среди них были подростки с муковисцидозом, которым повезет, если они доживут до 20 лет. Обнаружение мутировавших генов у больных кистозным фиброзом, мышечной дистрофией Дюшенна и другими заболеваниями дало нам надежду на то, что открытие метода излечения этих недугов уже не за горами. В то время были популярны лозунги «От гена к лекарству» и «От лаборатории к больничной койке», предвещавшие революцию в молекулярной медицине. Каждые несколько лет медицина будущего получала новое название – персонализированная медицина, прецизионная, геномная или индивидуализированная, как если бы смена названия могла победить судьбу.
В 1990 г. – с началом проекта «Геном человека» – я навсегда снял свой лабораторный халат. Мой момент озарения наступил, когда я наткнулся на объявление о приеме на работу в журнал Nature. Что ж, подумал я, это один из способов, чтобы мое имя попало на страницы самого известного в мире научного издания. Меня принял на работу главный редактор, сэр Джон Мэддокс. Через два года он предоставил мне возможность возглавить первый дочерний журнал из серии Nature – Nature Genetics[13]. На конференции в 1993 г., посвященной первому году выпуска, я влился в тщательно подобранную команду звезд, включая Фрэнсиса Коллинза, Крейга Вентера и Мэри-Клэр Кинг, которая за ужином вдохновила меня на работу над первой книгой.
Написанная вместе с моим покойным другом Майклом Уайтом книга «Прорыв» (Breakthrough) повествовала о блестящем генетике из Калифорнийского университета в Беркли, который в 1990 г. картировал на хромосоме ген, связанный с раком молочной железы, BRCA1. В 1994 г., через несколько недель после того, как компания Myriad Genetics обогнала Кинг в гонке на выделение этого гена, организаторы крупной генетической конференции в Монреале созвали пленарное заседание, чтобы отметить широко разрекламированный успех Myriad. Кинг удалось перетянуть все внимание на себя: она предоставила данные по целым семьям, у которых ее команда обнаружила специфические мутации BRCA1, способные вызвать то, что британский журналист Джон Даймонд назвал «цитологической анархией рака и смерти».
Кинг убеждала всех, что для нее не имело значения, кто выиграл гонку по обнаружению гена BRCA1: победив или проиграв, ее команда будет работать в лаборатории, изучая случаи мутаций в семьях. По ее словам, важно отличать реальность от безумия СМИ. «Домыслы в статьях The New York Times, в "60 минутах", выдумки парней на мотоциклах из журнала Time» – таковы были выпады в адрес Фрэнсиса Коллинза, ее бывшего партнера по исследованиям. По словам Кинг, реальность заключается в следующем:
У нас есть ген, а мы не знаем его предназначения и отлично понимаем, что за двадцать лет нашей работы над этим проектом более миллиона женщин уже умерли от рака молочной железы. Мы очень надеемся, что сделанное нами в течение следующих двадцати лет предотвратит смерть от этой болезни другого миллиона женщин[14].
Мэри-Клэр Кинг аплодировали стоя. Два десятилетия спустя в результате судебного процесса, проведенного на основании спора о генетическом тестировании на мутации гена BRCA1, Верховный суд США единогласным решением запретил выдачу патентов на гены[15].
Моя следующая книга «Расшифровка генома» (Cracking the Genome) была посвящена биологическому эквиваленту высадки человека на Луну – проекту «Геном человека», который привел к ожесточенной вражде между консорциумом под руководством Коллинза и захватившей власть группой с частным финансированием, возглавляемой Крейгом Вентером[16]. Командный центр его компании Celera Genomics с двумя огромными видеоэкранами больше походил на капитанский мостик звездолета «Энтерпрайз», вот только транслировали здесь не фотонные торпеды, а последовательности ДНК. Благодаря черновому варианту последовательности у нас появилась некоторая информация о человеческом организме, и мы могли приступить к систематическому поиску мутаций, которые лежат в основе доминантных и рецессивных (менделевских) заболеваний, а также начать понимать генетические причины более распространенных болезней, таких как астма и депрессия.
Едва лишь завершился проект «Геном человека», как я услышал, что Вентер призывает к использованию новой технологии секвенирования для быстрого чтения последовательности ДНК, которая могла бы дать информацию о всем геноме человека всего за $1000. Поскольку составление первого черновика генома человека стоило $2 млрд, это было похоже на научную фантастику. Но началось это в один воскресный день в феврале 2005 г., когда Клайв Браун написал своим коллегам из британской биотехнологической компании Solexa письмо с заголовком «МЫ СДЕЛАЛИ ЭТО!!!!». Используя новую технологию, изобретенную двумя профессорами химии из Кембриджского университета[17], команда Брауна секвенировала геном самого маленького известного вируса ФХ174. В следующем году другая компания, Illumina, приобрела Solexa и двинулась к достижению мифического порога в $1000, что заняло десять лет[18]. К тому времени мы уже знали о первых случаях, когда секвенирование генома спасло жизни, положив конец диагностическим одиссеям таких пациентов с загадочными генетическими заболеваниями, как Николас Волкер. Резкое снижение стоимости чтения последовательности ДНК сопровождалось значительным увеличением его скорости. Например, Стивен Кингсмор из детской больницы Рэди в Сан-Диего недавно установил мировой рекорд и был занесен в Книгу рекордов Гиннесса, секвенировав и обработав полный геном новорожденного всего за двадцать часов[19].
Каждая из этих историй рассказывает об огромном скачке в генетике, которому способствовали успехи в области чтения последовательности ДНК. С новыми технологиями секвенирования, предлагающими новые невероятные возможности для скоростного считывания ДНК[20][21], мы находимся на пути к получению данных о геноме за $100. Особого внимания заслуживает нанопоровое секвенирование, осуществляемое с помощью портативного устройства не больше смартфона, которое использовалось на Международной космической станции.
Наряду с успехами в чтении ДНК мы также наблюдаем существенный прогресс в написании ДНК. Чёрч и другие исследователи закодировали книги и фильмы в последовательность ДНК в цифровом формате[22] и создали дрожжевую клетку, объединив естественный набор из шестнадцати хромосом в единую мозаичную хромосому[23]. Cинтетическую биологию ждет впечатляющее будущее: проектирование цепей ДНК и настройка организмов для множества применений – от биоинженерного парфюма и нефтехимии до нового поколения антибиотиков и противомалярийных препаратов. Ученые даже расширили генетический алфавит, изначально состоящий из четырех букв, создав новые химические строительные блоки, которые могут заменить те, что уже входят в состав двойной спирали. Это закладывает основу для разработки синтетических белков, содержащих новые структурные элементы[24].
Успехи в «чтении» и «написании» очень важны. Но если бы я мог только читать или писать эту книгу, не имея возможности редактировать, искать и заменять, то она бы никогда не была опубликована. Это справедливо и для генной инженерии, или редактирования генома: оно позволяет ученым и даже людям, не имеющим отношения к науке, переписывать генетический код так же легко, как я меняю слово «мед» на «лед» или «гном» на «геном» на компьютере.
В 2014 г. лауреат Нобелевской премии Джим Уотсон пригласил меня помочь ему в переиздании научно-популярной книги с простым названием «ДНК», которую десятью годами ранее он написал вместе с Эндрю Берри[25]. Когда я размышлял о главных достижениях в области генетики, я понимал, что нам не избежать упоминания о CRISPR. В ноябре 2014 г. я смотрел прямую трансляцию ежегодной церемонии вручения премии за прорыв в науке (Breakthrough Prize), которую вели из ангара NASA в Калифорнии: в тот день Кэмерон Диас вручала Дудне и Шарпантье самую дорогую научную премию в мире, по $3 млн каждой[26]. Не прошло и 2,5 года после их знаменательного открытия, как научное сообщество и титаны Кремниевой долины причислили этих женщин к членам научной элиты.
Ни Дудна, ни Шарпантье не были врачами, но технология CRISPR открывает возможности вывести генную терапию на новый уровень. Обе женщины основали биотехнологические компании, предлагающие методы лечения на основе CRISPR, предназначенные для исправления мутаций, вызывающих развитие серповидноклеточной анемии, слепоты, миопатии Дюшенна и многих других болезней. «В течение последнего десятилетия я создавал ГМО-людей», – говорит Федор Урнов, коллега Дудны, который участвовал в разработке метода геномного редактирования в компании Sangamo Therapeutics в Калифорнии. В 2019 г., через 70 лет после того, как Лайнус Полинг назвал серповидноклеточную анемию первым «молекулярным заболеванием», Виктория Грей, афроамериканка из Миссисипи, стала первой пациенткой в США, прошедшей курс лечения серповидноклеточной анемии с помощью редактирования генома[27]. Через год она была здорова, к счастью, осложнений не выявилось, а ее клетки крови обновились. В настоящее время проводится все больше испытаний геномного редактирования, в основном с использованием CRISPR. Мы действительно находимся на пороге новой эры в медицине.
Однако применение редактирования генома зашло гораздо дальше. Своими действиями Хэ Цзянькуй перешел красную черту, научный Рубикон, который практически все ученые считали священным. Редактирование наследуемого генома (или клеток зародышевой линии) больше не служит сюжетом фантастических фильмов-антиутопий и страшных историй о детях на заказ. Этот джинн окончательно выпущен из бутылки, и вернуть его уже нельзя. Найдет ли редактирование клеток зародышевой линии применение для лечения генетических заболеваний? Захотят ли пары использовать CRISPR для генетического усовершенствования своих детей? Почему мы должны остановиться на устранении генетических заболеваний? Разве мы не можем допустить мысль о применении технологии CRISPR для расширения возможностей? Например, для включения в работу гена, который сокращает необходимую длительность сна, или обеспечивает защиту от развития деменции, или защищает космонавтов от последствий радиационного облучения. Или прав Урнов, утверждая, что редактирование зародышевой линии – это «решение, которое создает проблемы»?
По словам директора Института Броуда Эрика Ландера, CRISPR – это «удивительная технология, которая находит широкое применение. Однако, если вы будете делать нечто столь же судьбоносное, как переписывание наследуемой генетической информации, я хотел бы услышать для этого веские основания. Вы должны сказать, что само общество приняло такое решение, а без общего согласия этого не произойдет»[28].
«Редактируя человечество» – это история об одном из наиболее выдающихся научных открытий, которое совершило человечество, – открытии технологии CRISPR. Изначально моим намерением, получившим поддержку в виде стипендии Фонда Гуггенхайма, было сосредоточиться на теме CRISPR с точки зрения науки и ученых. В 2017 г. я решил начать издание нового журнала под названием The CRISPR Journal и стал встречаться с учеными, которые занимаются наиболее интересными исследованиями в этой области. Наше путешествие начинается с истории о группе неизвестных микробиологов и биохимиков – настоящих «героев CRISPR», пытающихся понять функцию неясных последовательностей бактериальной ДНК. CRISPR убедительно демонстрирует огромную ценность финансирования фундаментальных академических исследований и исследований, проводимых отдельными учеными. Крупные научные консорциумы, такие как объединение вокруг проекта «Геном человека», могут делать великие открытия, но давайте не будем забывать, что при небольшой финансовой поддержке на это способны и скромные ученые. Мало кто мог предположить, что исследования того, как бактерии побеждают своих вирусных врагов, дадут толчок к развитию многомиллиардной индустрии, которая сможет лечить болезни и помогать в решении проблем мирового голода.
Во второй части книги я обсуждаю взлеты и падения генной терапии, которая переживает возрождение после долгих лет упадка. Одна из больших надежд, возлагаемых на редактирование генома, связана с возможностью лечения пациентов с широким спектром тяжелых заболеваний, таких как мышечная дистрофия, гемофилия, слепота и серповидноклеточная анемия. В науке часто злоупотребляют термином «святой Грааль», но, если исправление одной буквы в генетическом коде человека не является желанной чашей спасения, я не знаю, как еще это назвать.