CRITICAL INTRODUCTION
The preparation of the series of works published under the general title "Geology of the Voyage of the 'Beagle'" occupied a great part of Darwin's time during the ten years that followed his return to England. The second volume of the series, entitled "Geological Observations on Volcanic Islands, with Brief Notices on the Geology of Australia and the Cape of Good Hope," made its appearance in 1844. The materials for this volume were collected in part during the outward voyage, when the "Beagle" called at St. Jago in the Cape de Verde Islands, and St. Paul's Rocks, and at Fernando Noronha, but mainly during the homeward cruise; then it was that the Galapagos Islands were surveyed, the Low Archipelago passed through, and Tahiti visited; after making calls at the Bay of Islands, in New Zealand, and also at Sydney, Hobart Town and King George's Sound in Australia, the "Beagle" sailed across the Indian Ocean to the little group of the Keeling or Cocos Islands, which Darwin has rendered famous by his observations, and thence to Mauritius; calling at the Cape of Good Hope on her way, the ship then proceeded successively to St. Helena and Ascension, and revisited the Cape de Verde Islands before finally reaching England.
Although Darwin was thus able to gratify his curiosity by visits to a great number of very interesting volcanic districts, the voyage opened for him with a bitter disappointment. He had been reading Humboldt's "Personal Narrative" during his last year's residence in Cambridge, and had copied out from it long passages about Teneriffe. He was actually making inquiries as to the best means of visiting that island, when the offer was made to him to accompany Captain Fitzroy in the "Beagle. " His friend Henslow too, on parting with him, had given him the advice to procure and read the recently published first volume of the "Principles of Geology," though he warned him against accepting the views advocated by its author. During the time the "Beagle" was beating backwards and forwards when the voyage commenced, Darwin, although hardly ever able to leave his berth, was employing all the opportunities which the terrible sea-sickness left him, in studying Humboldt and Lyell. We may therefore form an idea of his feelings when, on the ship reaching Santa Cruz, and the Peak of Teneriffe making its appearance among the clouds, they were suddenly informed that an outbreak of cholera would prevent any landing!
Ample compensation for this disappointment was found, however, when the ship reached Porta Praya in St. Jago, the largest of the Cape de Verde Islands. Here he spent three most delightful weeks, and really commenced his work as a geologist and naturalist. Writing to his father he says, "Geologising in a volcanic country is most delightful; besides the interest attached to itself, it leads you into most beautiful and retired spots. Nobody but a person fond of Natural History can imagine the pleasure of strolling under cocoa-nuts in a thicket of bananas and coffee-plants, and an endless number of wild flowers. And this island, that has given me so much instruction and delight, is reckoned the most uninteresting place that we perhaps shall touch at during our voyage. It certainly is generally very barren, but the valleys are more exquisitely beautiful, from the very contrast. It is utterly useless to say anything about the scenery; it would be as profitable to explain to a blind man colours, as to a person who has not been out of Europe, the total dissimilarity of a tropical view. Whenever I enjoy anything, I always look forward to writing it down, either in my log-book (which increases in bulk), or in a letter; so you must excuse raptures, and those raptures badly expressed. I find my collections are increasing wonderfully, and from Rio I think I shall be obliged to send a cargo home."
The indelible impression made on Darwin's mind by this first visit to a volcanic island, is borne witness to by a remarkable passage in the "Autobiography" written by him in 1876. "The geology of St. Jago is very striking, yet simple; a stream of lava formerly flowed over the bed of the sea, formed of triturated recent shells and corals, which it has baked into a hard white rock. Since then the whole island has been upheaved. But the line of white rock revealed to me a new and important fact, namely that there had been afterwards subsidence round the craters which had since been in action, and had poured forth lava. It then first dawned on me that I might perhaps write a book on the geology of the various countries visited, and this made me thrill with delight. That was a memorable hour to me, and how distinctly I can call to mind the low cliff of lava beneath which I rested, with the sun glaring hot, a few strange desert plants growing near and with living corals in the tidal pools at my feet."
Only five years before, when listening to poor Professor Jameson's lectures on the effete Wernerianism, which at that time did duty for geological teaching, Darwin had found them "incredibly dull," and he declared that "the sole effect they produced on me was a determination never so long as I lived to read a book on Geology, or in any way to study the science."
What a contrast we find in the expressions which he makes use of in referring to Geological Science, in his letters written home from the "Beagle!" After alluding to the delight of collecting and studying marine animals, he exclaims, "But Geology carries the day!" Writing to Henslow he says, "I am quite charmed with Geology, but, like the wise animal between two bundles of hay, I do not know which to like best; the old crystalline group of rocks, or the softer and more fossiliferous beds." And just as the long voyage is about to come to a close he again writes, "I find in Geology a never-failing interest; as it has been remarked, it creates the same grand ideas respecting this world which Astronomy does for the Universe." In this passage Darwin doubtless refers to a remark of Sir John Herschel's in his admirable "Preliminary Discourse on the Study of Natural Philosophy," – a book which exercised a most remarkable and beneficial influence on the mind of the young naturalist.
If there cannot be any doubt as to the strong predilection in Darwin's mind for geological studies, both during and after the memorable voyage, there is equally little difficulty in perceiving the school of geological thought which, in spite of the warnings of Sedgwick and Henslow, had obtained complete ascendancy over his mind. He writes in 1876: "The very first place which I examined, namely St. Jago in the Cape de Verde Islands, showed me clearly the wonderful superiority of Lyell's manner of treating Geology, compared with that of any other author, whose works I had with me, or ever afterwards read." And again, "The science of Geology is enormously indebted to Lyell – more so, as I believe, than to any other man who ever lived…I am proud to remember that the first place, namely, St. Jago, in the Cape de Verde Archipelago, in which I geologised, convinced me of the infinite superiority of Lyell's views over those advocated in any other work known to me."
The passages I have cited will serve to show the spirit in which Darwin entered upon his geological studies, and the perusal of the following pages will furnish abundant proofs of the enthusiasm, acumen, and caution with which his researches were pursued.
Large collections of rocks and minerals were made by Darwin during his researches, and sent home to Cambridge, to be kept under the care of his faithful friend Henslow. After visiting his relations and friends, Darwin's first care on his return to England was to unpack and examine these collections. He accordingly, at the end of 1836, took lodgings for three months in Fitzwilliam Street, Cambridge, so as to be near Henslow; and in studying and determining his geological specimens received much valuable aid from the eminent crystallographer and mineralogist, Professor William Hallows Miller.
The actual writing of the volume upon volcanic islands was not commenced till 1843, when Darwin had settled in the spot which became his home for the rest of his life – the famous house at Down, in Kent. Writing to his friend Mr. Fox, on March 28th, 1843, he says, "I am very slowly progressing with a volume, or rather pamphlet, on the volcanic islands which we visited: I manage only a couple of hours per day, and that not very regularly. It is uphill work writing books, which cost money in publishing, and which are not read even by geologists."
The work occupied Darwin during the whole of the year 1843, and was issued in the spring of the following year, the actual time engaged in preparing it being recorded in his diary as "from the summer of 1842 to January 1844;" but the author does not appear to have been by any means satisfied with the result when the book was finished. He wrote to Lyell, "You have pleased me much by saying that you intend looking through my 'Volcanic Islands;' it cost me eighteen months!!! and I have heard of very few who have read it. Now I shall feel, whatever little (and little it is) there is confirmatory of old work, or new, will work its effect and not be lost." To Sir Joseph Hooker he wrote, "I have just finished a little volume on the volcanic islands which we visited. I do not know how far you care for dry simple geology, but I hope you will let me send you a copy."
Every geologist knows how full of interest and suggestiveness is this book of Darwin's on volcanic islands. Probably the scant satisfaction which its author seemed to find in it may be traced to the effect of a contrast which he felt between the memory of glowing delights he had experienced when, hammer in hand, he roamed over new and interesting scenes, and the slow, laborious, and less congenial task of re-writing and arranging his notes in book-form.
In 1874, in writing an account of the ancient volcanoes of the Hebrides, I had frequent occasion to quote Mr. Darwin's observations on the Atlantic volcanoes, in illustration of the phenomena exhibited by the relics of still older volcanoes in our own islands. Darwin, in writing to his old friend Sir Charles Lyell upon the subject, says, "I was not a little pleased to see my volcanic book quoted, for I thought it was completely dead and forgotten."
Two years later the original publishers of this book and of that on South America proposed to re-issue them. Darwin at first hesitated, for he seemed to think there could be little of abiding interest in them; he consulted me upon the subject in one of the conversations which I used to have with him at that time, and I strongly urged upon him the reprint of the works. I was much gratified when he gave way upon the point, and consented to their appearing just as originally issued. In his preface he says, "Owing to the great progress which Geology has made in recent times, my views on some few points may be somewhat antiquated, but I have thought it best to leave them as they originally appeared."
It may be interesting to indicate, as briefly as possible, the chief geological problem upon which the publication of Darwin's "Volcanic Islands" threw new and important light. The merit of the work consisted in supplying interesting observations, which in some cases have proved of crucial value in exploding prevalent fallacies; in calling attention to phenomena and considerations that had been quite overlooked by geologists, but have since exercised an important influence in moulding geological speculation; and lastly in showing the importance which attaches to small and seemingly insignificant causes, some of which afford a key to the explanation of very curious geological problems.
Visiting as he did the districts in which Von Buch and others had found what they thought to be evidence of the truth of "Elevation-craters," Darwin was able to show that the facts were capable of a totally different interpretation. The views originally put forward by the old German geologist and traveller, and almost universally accepted by his countrymen, had met with much support from Elie de Beaumont and Dufrenoy, the leaders of geological thought in France. They were, however, stoutly opposed by Scrope and Lyell in this country, and by Constant Prevost and Virlet on the other side of the channel. Darwin, in the work before us, shows how little ground there is for the assumption that the great ring-craters of the Atlantic islands have originated in gigantic blisters of the earth's surface which, opening at the top, have given origin to the craters. Admitting the influence of the injection of lava into the structure of the volcanic cones, in increasing their bulk and elevation, he shows that, in the main, the volcanoes are built up by repeated ejections causing an accumulation of materials around the vent.
While, however, agreeing on the whole with Scrope and Lyell, as to the explosive origin of ordinary volcanic craters, Darwin clearly saw that, in some cases, great craters might be formed or enlarged, by the subsidence of the floors after eruptions. The importance of this agency, to which too little attention has been directed by geologists, has recently been shown by Professor Dana, in his admirable work on Kilauea and the other great volcanoes of the Hawaiian Archipelago.
The effects of subsidence at a volcanic centre in producing a downward dip of the strata around it, was first pointed out by Darwin, as the result of his earliest work in the Cape de Verde Islands. Striking illustrations of the same principle have since been pointed out by M. Robert and others in Iceland, by Mr. Heaphy in New Zealand, and by myself in the Western Isles of Scotland.
Darwin again and again called attention to the evidence that volcanic vents exhibit relations to one another which can only be explained by assuming the existence of lines of fissure in the earth's crust, along which the lavas have made their way to the surface. But he, at the same time, clearly saw that there was no evidence of the occurrence of great deluges of lava along such fissures; he showed how the most remarkable plateaux, composed of successive lava sheets, might be built up by repeated and moderate ejections from numerous isolated vents; and he expressly insists upon the rapidity with which the cinder-cones around the orifices of ejection and the evidences of successive outflows of lava would be obliterated by denudation.
One of the most striking parts of the book is that in which he deals with the effects of denudation in producing "basal wrecks" or worn down stumps of volcanoes. He was enabled to examine a series of cases in which could be traced every gradation, from perfect volcanic cones down to the solidified plugs which had consolidated in the vents from which ejections had taken place. Darwin's observations on these points have been of the greatest value and assistance to all who have essayed to study the effects of volcanic action during earlier periods of the earth's history. Like Lyell, he was firmly persuaded of the continuity of geological history, and ever delighted in finding indications, in the present order of nature, that the phenomena of the past could be accounted for by means of causes which are still in operation. Lyell's last work in the field was carried on about his home in Forfarshire, and only a few months before his death he wrote to Darwin: "All the work which I have done has confirmed me in the belief that the only difference between Palaeozoic and recent volcanic rocks is no more than we must allow for, by the enormous time to which the products of the oldest volcanoes have been subjected to chemical changes."
Darwin was greatly impressed, as the result of his studies of volcanic phenomena, followed by an examination of the great granite-masses of the Andes, with the relations between the so-called Plutonic rocks and those of undoubtedly volcanic origin. It was indeed a fortunate circumstance, that after studying some excellent examples of recent volcanic rocks, he proceeded to examine in South America many fine illustrations of the older igneous rock-masses, and especially of the most highly crystalline types of the same, and then on his way home had opportunities of reviving the impression made upon him by the fresh and unaltered volcanic rocks. Some of the general considerations suggested by these observations were discussed in a paper read by him before the Geological Society, on March 7th, 1838, under the title "On the Connection of Certain Volcanic Phenomena, and On the Formation of Mountain-chains, and the Effect of Continental Elevations." The exact bearing of these two classes of facts upon one another are more fully discussed in his book on South American geology.
The proofs of recent elevation around many of the volcanic islands led Darwin to conclude that volcanic areas were, as a rule, regions in which upward movements were taking place, and he was naturally led to contrast them with the areas in which, as he showed, the occurrence of atolls, encircling reefs, and barrier-reefs afford indication of subsidence. In this way he was able to map out the oceanic areas in different zones, along which opposite kinds of movement were taking place. His conclusions on this subject were full of novelty and suggestiveness.
Very clearly did Darwin recognise the importance of the fact that most of the oceanic islands appear to be of volcanic origin, though he was careful to point out the remarkable exceptions which somewhat invalidate the generalisation. In his "Origin of Species" he has elaborated the idea and suggested the theory of the permanence of ocean-basins, a suggestion which has been adopted and pushed farther by subsequent authors, than we think its originator would have approved. His caution and fairness of mind on this and similar speculative questions was well-known to all who were in the habit of discussing them with him.
Some years before the voyage of the "Beagle," Mr. Poulett Scrope had pointed out the remarkable analogies that exist between certain igneous rocks of banded structure, as seen in the Ponza Islands, and the foliated crystalline schists. It does not appear that Darwin was acquainted with this remarkable memoir, but quite independently he called attention to the same phenomena when he came to study some very similar rocks which occur in the island of Ascension. Coming fresh from the study of the great masses of crystalline schist in the South American continent, he was struck by the circumstance that in the undoubtedly igneous rocks of Ascension we find a similar separation of the constituent minerals along parallel "folia." These observations led Darwin to the same conclusion as that arrived at some time before by Scrope – namely that when crystallisation takes place in rock masses under the influence of great deforming stresses, a separation and parallel arrangement of the constituent minerals will result. This is a process which is now fully recognised as having been a potent factor in the production of the metamorphic rock, and has been called by more recent writers "dynamo-metamorphism."
In this, and in many similar discussions, in which exact mineralogical knowledge was required, it is remarkable how successful Darwin was in making out the true facts with regard to the rocks he studied by the simple aid of a penknife and pocket-lens, supplemented by a few chemical tests and the constant use of the blowpipe. Since his day, the method of study of rocks by thin sections under the microscope has been devised, and has become a most efficient aid in all petrographical inquiries. During the voyage of H.M.S. "Challenger," many of the islands studied by Darwin have been revisited and their rocks collected. The results of their study by one of the greatest masters of the science of micropetrography – Professor Renard of Brussels – have been recently published in one of the volumes of "Reports on the 'Challenger' Expedition." While much that is new and valuable has been contributed to geological science by these more recent investigations, and many changes have been made in nomenclature and other points of detail, it is interesting to find that all the chief facts described by Darwin and his friend Professor Miller have stood the test of time and further study, and remain as a monument of the acumen and accuracy in minute observation of these pioneers in geological research.
JOHN W. JUDD.