- Книги
- Аудиокниги
- Списки
- Жанры
- Cаморазвитие / личностный рост
- Зарубежная психология
- Попаданцы
- Боевая фантастика
- Современные детективы
- Любовное фэнтези
- Зарубежные детективы
- Современные любовные романы
- Боевое фэнтези
- Триллеры
- Современная русская литература
- Зарубежная деловая литература
- Космическая фантастика
- Современная зарубежная литература
- Все жанры
- Серии
Главная›Информатика и вычислительная техника›В. П. Мешалкин›Предварительная оценка прагматической ценности информации в задаче классификации на основе глубоких нейронных сетей
Название книги:
Предварительная оценка прагматической ценности информации в задаче классификации на основе глубоких нейронных сетей
Автор:
В. П. МешалкинАннотация
- Обложки
Предложен метод предварительной оценки прагматической ценности информации в задаче классификации состояния объекта на основе глубоких рекуррентных сетей долгой краткосрочной памяти. Цель проводимого исследования состояла в разработке метода прогноза состояния контролируемого объекта при минимизации количества используемых прогностических параметров, достигаемой с помощью предварительной оценки прагматической ценности информации. Это особенно актуальная задача в условиях обработки больших данных, характеризуемых не только значительными объемами поступающей информации, но и скоростью ее поступления и полиформатностью. Генерация больших данных сейчас происходит практически во всех сферах деятельности, что обусловлено широким внедрением в них Интернета вещей. Метод реализуется двухуровневой схемой обработки входной информации: на первом уровне применяется алгоритм машинного обучения «случайный лес», который имеет значительно меньшее количество настраиваемых параметров, чем рекуррентная нейронная сеть, используемая на втором уровне для окончательной и более точной классификации состояния контролируемого объекта или процесса. Выбор «случайного леса» обусловлен его способностью к оценке важности переменных в задачах регрессии и классификации. Это используется при определении прагматической ценности входной информации на первом уровне схемы обработки данных. Для этого выбирается параметр, который отражает указанную ценность в каком-либо смысле, и на основе ранжирования входных переменных по уровню важности осуществляется их отбор для формирования обучающих наборов данных для рекуррентной сети. Алгоритм предложенного метода обработки данных с предварительной оценкой прагматической ценности информации реализован в программе на языке MatLAB и показал свою работоспособность в эксперименте на модельных данных.
В нашей электронной библиотеке вы можете скачать книгу «Предварительная оценка прагматической ценности информации в задаче классификации на основе глубоких нейронных сетей» автора В. П. Мешалкина в формате epub, fb2, rtf, mobi, pdf себе на телефон, андроид, айфон, айпад, а так же читать онлайн и без регистрации. Ниже вы можете оставить отзыв о прочитанной или интересующей вас книге.

Издательство:
СинергияМетки:
MATLAB, интернет вещей, информационные технологии (IT), модели и методики, нейронные сети, обработка данныхПоделиться: